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Homogeneous approximation of series of iterated

integrals and time optimality

Daria Andreieva, Kharkiv, Ukraine
Svetlana Ignatovich, Kharkiv, Ukraine

We consider affine control systems with output of the form

ẋ =
m∑
i=1

Xi(x)ui, y = h(x), (1)

where X1(x), . . . , Xm(x) are real analytic vector fields and h(x) is a real
analytic scalar function defined in a neighborhood of the origin in Rn.
Let x(t;u) denote the trajectory of the system starting at x(0) = 0 and
corresponding to the control u(t) = (u1(t), . . . , um(t)). Then the output
y(t) = h(x(t;u)) can be found in the form of a series of iterated integrals

y(t) =
∑
I

cIηI(t, u), (2)

where I = (i1, . . . , ik) are multi-indices, cI are scalar coefficients, and
ηI(t, u) are iterated integrals. Such series can be studied within an al-
gebraic approach since iterated integrals form a free associative algebra.
The constraint u21(t) + · · · + u2m(t) ≤ 1 induces a gradation in this algebra.
Namely, it is natural to define the order of the iterated integral ηI(t, u)
as |I|, i.e., the length of the multi-index. This allows us to introduce the
concept of a homogeneous approximation of the series (2): we say that the
sum of the terms of minimal order from the series (2) is the homogeneous
approximation of the initial series (2).

In the talk, we give an algebraic description of the introduced homo-
geneous approximation and discuss its connection with the time-optimal
control problem for the system (1).

[1] Sklyar, G.M., Ignatovich, S.Yu.: Free algebras and noncommutative power series in
the analysis of nonlinear control systems: an application to approximation problems.
Dissertationes Math. (Rozprawy Mat.) 504, 1-88 (2014).

[2] Andreieva, D.M., Ignatovich, S.Yu.: Homogeneous approximation for minimal re-
alizations of series of iterated integrals. Visnyk of V.N.Karazin Kharkiv National
University, Ser. Mathematics, Applied Mathematics and Mechanics 96, 23-39 (2022).
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On a class of finite-time stabilizing controls for

nonlinear systems in a critical case

Maxim Bebiya, Kharkiv, Ukraine
Valerii Korobov, Kharkiv, Ukraine

We address the finite-time stabilization problem for nonlinear systems
in a critical case. Namely, we study the following nonlinear system{

ẋ1 = u, |u(x)| ≤ d,

ẋi = ci−1x
2ki−1+1
i−1 + fi−1(t, x, u), i = 2, . . . , n,

(1)

where u ∈ R is a control, d > 0 is a given number, ki = pi
qi

(pi > 0
is an integer number, qi > 0 is an odd number), ci ̸= 0 are real numbers,
fi(t, x, u) are continuous functions, fi(t, 0, 0) = 0 for all t ≥ 0 (i = 1, n− 1).

We solve the bounded control synthesis problem for system (1), which
is to find a control u = u(x) such that

(i) for every x0 ∈ U(0) ⊂ Rn there exists a number T (x0) < +∞ such
that lim

t→T (x0)
x(t, x0) = 0, where x(t, x0) is a solution of system (1) with

u = u(x) that satisfies the condition x(0, x0) = x0;
(ii) the control u(x) satisfies the restriction |u(x)| ≤ d for all x ∈

Rn\ {0}.
We develop the results of [1], [2] to construct a class of bounded finite-

time stabilizing controls u = uα(x), α ≥ 1 to ensure finite-time convergence
of the trajectories. Our approach is based on the controllability function
method [3]. We introduce a family of controllability functions Θα(x) to
guaranty the inequality Θ̇(x) ≤ −βΘ1− 1

α (x), α ≥ 1 for some β > 0 (which
is sufficient for finite-time convergence). We formulate growth conditions
on fi(t, x, u) under which we achieve finite-time convergence.

[1] Bebiya, M. O. and Korobov, V. I.: On Stabilization Problem for Nonlinear Systems
with Power Principal Part. Journal of Mathematical Physics, Analysis, Geometry.
12, 113-133 (2016).

[2] Bebiya, M. O.: Global synthesis of bounded controls for systems with power non-
linearity. Visnyk of V.N. Karazin Kharkiv National University, Ser. Mathematics,
Applied Mathematics and Mechanics. 81, 36-51 (2015).

[3] Korobov, V.I.: A general approach to the solution of the bounded control synthesis
problem in a contollability problem. Math USSR Sb. 37, 535-557 (1980).
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The scheme for the construction of solutions for the

nonlinear boundary-value problem unsolved with

respect to the derivative

Peter Benner, Magdeburg, Germany
Sergey Chuiko, Magdeburg, Germany
Olga Nesmelova, Sloviansk, Ukraine

We establish constructive necessary and sufficient conditions of solvabil-
ity and a scheme for construction of the solutions of a nonlinear periodic
boundary-value problem for a Rayleigh-type equation unsolved with re-
spect to the derivative [1, 2].

The relevance of studying nonautonomous boundary-value problems,
unsolved with respect to derivative, is also, associated with the fact that
the study of traditional problems, resolved by derivative, sometimes com-
plicated, for example, in the case of nonlinearities, not integrable in ele-
mentary functions. We consider the critical case where the equation for
the generating amplitudes of a weakly nonlinear periodic boundary-value
problem for a Rayleigh-type equation does not turn into an identity. For
finding the constructive conditions for the solution and convergent itera-
tive scheme for constructing approximate solutions to a nonautonomous
nonlinear boundary-value problem unsolved with respect to the derivative
we use the least squares method [3].

As an example of application of the proposed iterative scheme, we find
approximations to the solutions of periodic boundary-value problems un-
solved with respect to the derivative in the case of periodic problem for
the equation used to describe the motion of satellites on elliptic orbits.

[1] Samoilenko, A.M., Chuiko, S.M.,. Nesmelova, O.V.: Nonlinear boundary-value
problem unsolved with respect to the derivative, Ukrainian Math. Journ., 72(8),
1280–1293 (2021).

[2] Shlapak, Yu. D.: Periodic solutions of nonlinear second-order equations which are not
solved for the highest derivative, Ukrainian Math. Journ., 26, � 6, 850–854 (1974).

[3] Benner, P., Chuiko, S., Nesmelova, O.: Least-squares method in the theory of non-
linear boundary-value problems unsolved with respect to the derivative, Ukrainian
Math. Journ., 75(1), 40-55 (2023).
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Adomian decomposition method for the nonlinear

boundary-value problems

Peter Benner, Magdeburg, Germany
Sergey Chuiko, Slavyansk, Ukraine
Mykyta Popov, Slavyansk, Ukraine

We proves the existence of a solution of a nonlinear periodic boundary-
value problem for an ordinary differential equation with switchings [1] and
constructs an iterative scheme for finding the solution of this problem using
the Adomian decomposition method [2, 3]. The relevance of the study of
the boundary-value problem with switches is related to the wide application
of similar problems in the study of non-isothermal chemical reactions [4].
We give an example of modelling such reactions. An example of finding
approximations to the periodic solution of this problem will be given using
the iterative scheme we have built.

The main problem of this study, is that when constructing solutions
of nonlinear boundary-value problems, the problem of the impossibility of
finding solutions in elementary functions arises, which, in turn, leads to
large errors in the solutions of nonlinear boundary-value problems. A sim-
ilar problem was demonstrated in our earlier papers for the periodic prob-
lem for the equation that defines the motion of a satellite in an elliptical
orbit. Taking into account the above, the simplification of calculations of
derivative nonlinearities and the possibility of finding solutions of nonlinear
boundary-value problems, in particular, periodic boundary-value problems,
in elementary functions can be achieved using the Adomian decomposition
method. An example of such a simplification obtained.

[1] Benner, P., Chuiko, S., Zuyev, A.: A periodic boundary value problem with switch-
ings under nonlinear perturbations. Boundary Value Problems, 50, 1-12 (2023).

[2] Adomian, G.: Convergent series solution of nonlinear equations. Journal of Compu-
tational and Applied Mathematics 11, 225–230 (1984).

[3] Chuiko S., Chuiko, A., Popov, N.: Adomian decomposition method in theory of
nonlinear periodical boundary value problems. Nonlinear Oscillations 25 (4), 413–425
(2022).

[4] Benner, P., Seidel-Morgensternand, A., Zuyev, A.: Periodic switching strategies for
an isoperimetric control problem with application to nonlinear chemical reactions.
Applied Mathematical Modelling 69(1), 287–300 (2019).
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Extended set of solutions of a bounded finite-time

stabilization problem via V.I. Korobov’s

controllability function

Abdon E. Choque-Rivero, Morelia, Mich., Mexico

For the canonical system, an extended set of bounded finite-time stabi-
lizing positional controls is proposed. V.I. Korobov’s controllability func-
tion [3, 4, 5, 6] is used to construct these controls, which are dependent
on a parameter.The mentioned extension is based on the enlarging of the
interval of the mentioned parameter. We enlarge the parameter interval
and explicitly compute its endpoints as functions of the dimension n of
the given system. The constructed controllability function is exactly the
motion time from the initial point to the origin. We consider the case when
the controllability function is a non-unique solution of a certain equation.
See [1, 2].

[1] Choque-Rivero, A.E.: Extended set of solutions of a bounded finite-time stabilization
problem via the controllability function. IMA J. Math. Control Inform. 38(4), 1174–
1188 (2021).

[2] Choque-Rivero, A.E.: Korobov’s controllability function as motion time: Extension
of the solution set of the synthesis problem. Accepted to appear in Mat. Fiz. Anal.
Geom. 1–31 (2023).

[3] Choque Rivero A.E., Korobov V.I. and Skoryk V.O.: Controllability function as
time of motion. I, Mat. Fiz. Anal. Geom. 11(2) 208–225 (2004). English translation
in http://arxiv.org/abs/1509.05127.

[4] Korobov, V.I.: A general approach to the solution of the problem of synthesizing
bounded controls in a control problem, Mat. Sb. 109 (151) 582–606 (1979). English
transl.: Mat. Sb. 37 (4) 535–557 (1980).

[5] Korobov, V.I.: Controllability function method, NITS, Inst. Comp. Research (2007).

[6] Korobov, V.I. and Sklyar G.M.: Methods for constructing of positional controls and
an admissible maximum principle, Differ. Uravn. 26(11) 1914–1924 (1990).
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Nonlinear autonomous boundary value problem for

differential algebraic system

Sergey Chuiko, Magdeburg, Germany
Daria Diachenko, Slavyansk, Ukraine

We denote A and B are (m× n)−measurable matrices and Z(z, ε) is n
measurable vector function. We establish constructive conditions of solv-
ability and a scheme of construction of the solutions [1]

z(t, ε) : z(·, ε) ∈ C1[a, b(ε)], z(t, ·) ∈ C[0, ε0], b(0) := b∗

for a nonlinear boundary-value problem for a nondegenerate differential
algebraic system

Az′ = B z + εZ(z, ε), ℓz(·, ε) = α. (1)

Here, ℓz(·, ε) is a linear bounded vector functional

ℓz(·, ε) : C[a, b(ε)] → Rq.

We seek solutions of the problem (1) in a small neighborhood of the solution

z0(t) ∈ C1[a, b∗]

of the generating Noether (q ̸= n) differential-algebraic boundary-value
problem

Az′0 = B z0, ℓz0(·) = α ∈ Rq.

We assume the vector function Z(z, ε) is a continuously differentiable with
respect to the unknown z(t, ε) in a small neighborhood of the solution of
the generating problem and continuously differentiable with respect to the
small parameter ε in a small positive neighborhood of zero. The matrix A
is generally assumed to be rectangular m ̸= n, or square, but degenerate
[2]. We propose a convergent iterative algorithm for finding approximate
solutions of the nonlinear autonomous boundary-value problem for a for a
nondegenerate differential algebraic system (1).

[1] Chuiko, S.M., Boichuk, I.A.: An autonomous Noetherian boundary value problem in
the critical case, Nonlinear Oscillations (N.Y.), 12, 405-416 (2009).

[2] Chuiko, S.M.: A generalized Green operator for a linear Noetherian differential-
algebraic boundary value problem. Siberian Advances in Mathematics, 30, 3. 177-191
(2020).
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Approximations of the solutions of nonlinear matrix

equations using the Newton-Kantorovich method

Sergey Chuiko, Slaviansk, Ukraine
Kateryna S. Shevtsova, Slaviansk, Ukraine

The study of nonlinear matrix equations [1], in particular, the algebraic
matrix Riccati equation [2, 3], is connected with numerous applications
of such equations while solving the differential matrix Riccati equation,
in the theory of nonlinear oscillations, in mechanics, biology, and radio
technology, the theory of control and stability of motion, and others [4].

Newton’s method [5] is applicable for finding approximations for solu-
tions of nonlinear matrix equations in the case of unknown square matrix.
To find approximations for the solutions of nonlinear matrix equations in
the case of unknown rectangular matrix, the Newton-Kantorovich method
[6, 7] used. As an example of the iterative scheme construction, approxi-
mations for the solutions of the nonlinear algebraic matrix Riccati equation
and their accuracy errors were determined [8].

[1] Boichuk, A.A.: Criterion of the solvability of matrix equations of the Lyapunov type.
Ukrainian Math. Journal, 50 (8), 1162-1169 (1998).

[2] Kuvshinov, V.M.: Specific features of the numerical solution of the matrix algebraic
Riccati equation using the settling method. Uchenye Zapiski TsAGI, X(1), 69–87
(1979).

[3] Palin, V.V.: Solvability of Quadratic Matrix Equations. Vestnik Moscow University,
Matematika. Mekhanika, 63 (6), 36–41 (2008).

[4] Boichuk, A.A.: A Critical Periodic Boundary Value Problem for a Matrix Riccati
Equations. Differential Equations, 37 (4), 464–471 (2001).

[5] Kantorovich, L.V., Akilov, G.P.: Functional Analysis, Nauka, Moscow (1977).

[6] Chuiko, S.M.: To the generalization of the Newton-Kantorovich theorem. Visnyk of
V.N. Karazin Kharkiv National University. Ser. Mathematics, Applied Mathematics
and Mechanics, 85(1), 62–68 (2017).

[7] Chuiko, S.M.: To the generalization of the Newton-Kantorovich theorem in the Ba-
nakh space. Dopovidi NAS of Ukraine, 6 (2018).

[8] Chuiko, S.M., Shevtsova, S.K.: Solvability conditions for nonlinear matrix equations.
Journal of Mathematical Sciences, 270, 3, 407-419 (2023).
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Determining the speed of rotation of the rotor in

case of incomplite information about the operation of

two-phase asynchronous motor

Iryna Dmytryshyn, Slovyansk, Ukraine

Mathematical modeling of electromechanical systems as one of the stages of designing
systems of an automated electrical device serves to study the behavior of the system in
artificially designed emergency situations by blocking the measurement of certain compo-
nents of the model. The estimation of the state of the parameters of the model, which
ensures the stability of the process, has not yet been solved. Since the measurement of
the flux linkage vector is not a simple procedure, it is necessary to use methods that allow
determining the flux linkage of the rotor through dynamic equations by measuring the
stator voltage, rotor speed and phase currents. The greatest interest in practice is the
evaluation of the speed of rotation of the rotor and the torque.

The paper considers a mathematical model of a two-phase asynchronous motor [1].

ẏ1 = −a1y1 + a2U1 + a1µx1 + a1y3x2,
ẏ2 = −a0y2 + a2U2 − a1y3x1 + a1µx2,
ẏ3 = a3y2x1 − a3y1x2 − x3,
ẋ1 = a4y1 − µx1 − y3x2,
ẋ2 = a4y2 + y3x1 − µx2,
ẋ3 = 0,

(1)

The following notations are introduced in the studied model: x = (λa, λb,
np·τL
Im

)T , y =

(ia, ib, np · ω)T , where ia, ib describe the stator currents, λa, λb – rotor fluxes, ω – speed
of rotation of the rotor, U1, U2 – stator voltage, np – the number of pairs of poles, Im –
moment of inertia and τL – rotor torque, a0, a1, a2, a3, a4, µ > 0 – some constants.

In the work, a nonlinear observer for the unknown components x3, y3 is constructed
using the method of invariant transformations.

[1] Sassano, M: Towards constructive nonlinear control systems analysis and design. PhD
thesis, Control and Power Research Group Department of Electrical and Electronic
Engineering Imperial College London (2001).
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On controllability problems for the heat equation

with variable coefficients on a half-axis controlled by

the Neumann boundary condition

Larissa Fardigola, Kharkiv, Ukraine
Kateryna Khalina, Kharkiv, Ukraine

Consider the following control system:

wt =
1

ρ
(kwx)x + γw, x ∈ (0,+∞), t ∈ (0, T ), (1)(√

k

ρ
wx

)∣∣∣∣∣
x=0

= u, t ∈ (0, T ), (2)

w(·, 0) = w0, x ∈ (0,+∞), (3)

where T > 0 is a constant; ρ, k, γ, and w0 are given functions; u ∈ L∞(0, T )
is a control. We assume ρ, k ∈ C1[0,+∞) are positive on [0,+∞), (ρk) ∈
C2[0,+∞), (ρk)′(0) = 0. We also assume ρ, k, γ satisfy some additional
smoothness and growth conditions. The control system is considered in
modified Sovolev spaces.

We prove that any initial state of the control system (except the zero
one) is not null-controllable in a given time T > 0.

We also prove, however, that each initial state of the control system is
approximately controllable to any target state in a given time T > 0.

Due to transformation operator generated by the equation data ρ, k, γ
(see [1], [2]), the main results are obtained from their analogues obtained
earlier in the case of constant coefficients for ρ = k = 1, γ = 0 (see
[3]). Applying this operator is a focal point of the work. The results are
illustrated by examples.

[1] L.V. Fardigola, Transformation operators in controllability problems for the wave
equations with variable coefficients on a half-axis controlled by the Dirichlet boundary
condition, Math. Control Relat. Fields 5 (2015), 31–53.

[2] L.V. Fardigola, Transformation operators and modified Sobolev spaces in controlla-
bility problems on a half-axis, J. Math. Phys., Anal., Geom. 12 (2016), 17–47.

[3] L. Fardigola and K. Khalina, Controllability problems for the heat equation on a
half-axis with a bounded control in the Neumann boundary condition, Math. Control
Relat. Fields 1 (2021), 211–236.
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Problem of optimal exact observability of

a Timoshenko beam

Mateusz Firkowski, Szczecin, Poland
Jaros law Woźniak, Szczecin, Poland

We consider the problem of optimal exact observability of distributed
parameter system of clamped–free vibrating Timoshenko beam system gov-
erned by {

ẅ(x, t) − w′′(x, t) − ξ′(x, t) = 0,

ξ̈(x, t) − ξ′′(x, t) + w′(x, t) + ξ(x, t) = 0,

for x ∈ (0, 1) and t > 0, with boundary conditions of the following form{
w(0, t) = ξ(0, t) = 0,

w′(1, t) + ξ(1, t) = ξ′(1, t) = 0.

We observe the deflection of the center line of the beam at the free end,
i.e. y = w(1, ·).

Then, we present some important facts about spectral properties of the
operator of motion of the considered system. Next, we prove that it is not
exactly observable in default topologies, and we find a stronger topology
for state observation for which the system in question becomes exactly
observable.

The main result of the talk is devoted to find optimal topology of the
observable space. The sharpness of the obtained result is proved.

[1] Sklyar, G. M., Woźniak, J., Firkowski, M.: Exact observability conditions for Hilbert
space dynamical systems connected with Riesz basis of divided differences. Syst.
Control Lett. 145 (2020), 104782.

[2] Woźniak, J., Firkowski, M.: Sobolev’s type optimal topology in the problem of ex-
act observability for Hilbert space dynamical systems connected with Riesz basis of
divided differences, (under review).
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Partial differential equations in the module of

copolynomials in several variables over a

commutative ring

Sergey Gefter, Kharkiv, Ukraine
Aleksey Piven’, Kharkiv, Ukraine

Let K be an arbitrary commutative integral domain with identity,
K[x1, ..., xn] be the ring of polynomials with coefficients in K and
K[x1, ..., xn]′ be the module of K-linear mappings from K[x1, ..., xn] to
K. By a copolynomial over the ring K we mean an element of the
module K[x1, ..., xn]′. For any multi-index α = (α1, ..., αn) ∈ Nn

0 the

derivative DαT = ∂|α|T
∂x

α1
1 ∂x

α2
2 ···∂xαn

n
(|α| =

n∑
j=1

αj) of a copolynomial T is de-

fined in the same way as in the classical theory of generalized functions:
(DαT, p) = (−1)|α|(T,Dαp), p ∈ K[x1, ..., xn]. We prove an existence and
uniqueness theorem for a differential equation of infinite order which can
be considered as an algebraic version of the classical Malgrange-Ehrenpreis
theorem for the existence of fundamental solutions for differential operators
with constant coefficients.

Theorem 1 Let F =
∞∑

|α|=0

aαD
α be a differential operator of infinite order

on K[x1, ..., xn]′ with coefficients aα ∈ K. If a0 is an invertible element
of K, then for any copolynomial T ∈ K[x1, ..., xn]′ there exists a unique
solution u ∈ K[x1, ..., xn]′ of the differential equation Fu = T .

The Cauchy-Stieltjes transform of a copolynomial T ∈ K[x1, ..., xn]′

is defined as the following formal Laurent series from the ring
1

s1s2···snK[[ 1s1 ,
1
s2
, ..., 1

sn
]]:

C(T )(s) =
∞∑

|α|=0

(T, xα)

sα+ι
, s = (s1, ..., sn), x = (x1, ..., xn), ι = (1, ..., 1).

The mapping C : K[x1, ..., xn]′ → 1
s1s2···snK[[ 1s1 ,

1
s2
, ..., 1

sn
]] is an isomorphism

of K-modules. The multiplication of copolynomials is defined through the
multiplication of their Cauchy-Stieltjes transforms.

Let P ∈ K[z1, ..., zm], P (0) = 0 and let Fj =
∞∑

|α|=0

aj,αD
α (j = 1, ...,m)

be differential operators in K[x1, ..., xn]′ with coefficients aj,α ∈ K. Con-
sider the following Cauchy problem in the module K[x1, ..., xn]′[[t]] of



16 DIFFERENTIAL EQUATIONS and CONTROL THEORY

formal power series of the form u(t, x) =
∞∑
k=0

uk(x)tk with coefficients

uk(x) ∈ K[x1, ..., xn]′:

∂u(t, x)

∂t
= P ((F1u)(t, x), ..., (Fmu)(t, x)) , u(0, x) = Q(x) ∈ K[x1, ..., xn]′.

(1)

Theorem 2 Let K contains the field of rational numbers. Then for any
copolynomial Q ∈ K[x1, ..., xn]′ the Cauchy problem (1) has a unique solu-
tion.

This work was supported by the Akhiezer Foundation.
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Continual distribution for the Bryan–Pidduck

equation

Vyacheslav Gordevskyy, Kharkiv, Ukraine
Oleksii Hukalov, Kharkiv, Ukraine

The nonlinear integrodifferential Boltzmann equation [1] that describes
the evolution of rarefied gases is one of the main equations of the kinetic
theory of gases. For the rough sphere model, it is called the Bryan-
Pidduck equation. We obtain a so-called continual distribution for the
global Maxwellian (it depends only on the linear and angular velocities of
gas particles) in the form:

f(t, x, V, ω, u) =

∫
R3

φ(t, x, u)M(V, ω, u)du, (1)

where the Maxwellian M(V, ω, u) is given by the formula [1]:

M(V, ω, u) = ρI3/2
(
β

π

)3

e−β((V−u)
2
+Iω2). (2)

As a measure of deviation between the parts of Bryan-Pidduck equation,
we use a uniform integral error. In the case of the model of rough spheres,
it has the form:

∆ = sup
(t,x)∈R4

∫
R3

dV

∫
R3

dω
∣∣∣D(f) −Q(f, f)

∣∣∣. (3)

In the article [2], we constructed the sought approximate solution (1).
We established sufficient conditions for the coefficient function φ(t, x, u)
and hydrodynamic parameters appearing in the distribution (2), which
enable one to make the analyzed error (3) as small as desired.

[1] S. Chapman, T.G. Cowling: The mathematical theory of non-uniform gases,
Cambridge Univ. Press, Cambridge (1952).

[2] V.D. Gordevskyy, O.O. Hukalov: Continual Distribution for the Bryan – Pidduck
Equation. Ukrains’kyi Matematychnyi Zhurnal 11, 1487-94 (2020).
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Mathematical simulation of cold extrusion processes

with complex tool configuration

Natalia Hrudkina, Zaporizhzhya, Ukraine

Cold extrusion processes provide a high surface quality and precise di-
mensions of stamped workpieces and parts and demonstrate a steady trend
to expansion of technological capabilities and implementation in manufac-
turing [1]. The configuration of the tool (the presence of roundings) allows
to form the required profile of the part and significantly affects on the de-
formation and power modes of the deformation [2], [3]. Determination of
the optimal power mode in the form of engineering formulas, taking into
account the influence of design features of the tool, will contribute to a
more active implementation of these processes in the manufacturing. Pro-
poses the using of an approximate curve as a replacement for a quarter
of a circle reflecting of the matrix rounding. Developed new kinematic
module with rounding allows to expand the capabilities of upper bound
method for modeling the processes of cold extrusion with a complex tool
shape [3]. This will allow in the future to use the above calculations in
new schemes and will help to obtain an assessment of the power mode
and shape resizing and, as a result, to develop recommendations for the
optimal configuration of the tool and more active implementation of these
processes in the manufacturing.

[1] Bhaduri A.: Extrusion. Mechanical Properties and Working of Metals and Alloys.,
599-646 (2018).

[2] Hrudkina N. S., Aliieva L. I.: Modeling of cold extrusion processes using kinematic
trapezoidal modules. FME Transactions. 48(2), 357-363 (2020).

[3] Hrudkina N., Aliieva L., Markov O., Kartamyshev D., Shevtsov S., Kuznetsov M.:
Modeling the process of radial-direct extrusion with expansion using a triangular
kinematic module. Eastern European Journal of Enterprise Technologies. 3/1 (105),
17–22 (2020).
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Levels in the gap of the essential spectrum of a

differential operator

Aleksandr Kholkin, Dnipro, Ukraine

Various approaches to the study of discrete levels in spectral gaps were
considered in works of Rofe-Beketov F., Kholkin A., Gestesi F., Simon B.
and Teshl G.

Consider a self-adjoint differential equation of order r ≥ 1 with operator
coefficients

l [y] =
r∑

k=0

ik lk [y] = λW (x) y, (1)

l2j = Djpj (x)Dj, pj
∗ (x) = pj (x) , l2j = Djpj (x)Dj, pj

∗ (x) = pj (x) ,

operator coefficients pj (x) , qj (x) uniformly continuously depend on x to-
gether with its derivatives up to the order 2r inclusive, operator W (x)
and the coefficient of the highest derivative in equation (1) has a bounded
inverses in separable Hilbert space H for x ∈ (a, b). By L denote min-
imal differential operator generated by a differential expression lW [y] =
W−1 (x) l [y]. Operation l2W [y] = lW [lW [y]] can be considered as an ordi-
nary differential order 2r. By M denote the minimal differential operator
generated by the operation l2W [y]. Let L̃ self-adjoint operator extension of

L. Operator
(
L̃
)2

is a self-adjoint extension M̃ of the positive symmetric

operator M . By Mb we denote the restriction of M̃ by minimality require-

ment regarding b, p = Def
{
M̃
∣∣∣D (M̃) ∩D

(
MF

b

)}
, N (λ, µ) – number

of eigenvalues λk ∈ (λ, µ) operator L̃ counting multiplicities æ (λk).
Let Y (x, λ) be a fundamental solution of the problem (1), Ua [y] = 0.

Let
Y (x, λ, µ) = {Y (x, λ);Y (x, µ)} ,

Y ∆(x, λ, µ) = col
{
Y (x, λ, µ);Y ′(x, λ, µ); . . . ;Y (r−1)(x, λ, µ)

}
.

Theorem 1 Let (α, β)– gap in the essential spectrum of the operator L̃,
α < λ < µ < β. Then

N(λ, µ) − p ≤
∑

x∈(a,b)

nulY ∆(x, λ, µ) ≤ N(λ, µ) (2)

If æLb
(λ) = æLb

(µ) = 0, where Lb ⊆ L̃ is the minimal opera-
tor with respect to the end b, then in (2) instead of p we can take
min {p, Def Mb − æ (λ) − æ (µ)}. If a > −∞, then the theorem is also
true for λ = α, µ = β.
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Mathematical maintenance to design the automated

control systems in agreement with the circular

economy principles

Irina Kolupaieva, Kharkiv, Ukraine
Igor Nevliudov, Kharkiv, Ukraine
Yurii Romashov, Kharkiv, Ukraine

The mathematical maintenance is considered as the set of the mathe-
matical objects and the rules for their applications to design the automated
control systems. Such consideration allows us to imagine designment re-
sults of the automated control systems as predefined by the used math-
ematical maintenance, so it is led to development of such mathematical
maintenance as the actually important problem connected with improve-
ment of the automation control systems. Implementation of the circular
economy is considered at resent as the way of resolving a lot of global mod-
ern challenges especially about environment pollution, but to realise this
way it is necessary to rebuild a lot of conventional approaches in different
fields, including in designment of the automated control systems.

It is proposed to make more wider the conventional approaches to de-
sign the automated control systems on the basis of improved mathematical
modelling of the processes in the automated systems to consider the differ-
ent kinds of wastes during exploitation. Application of the the parametric
identification procedure will allow to represent the mathematical model
of the complicated automation objects by means the ordinary differen-
tial equations suitable for designment of the automated control systems.
Basing on the existed experience [1, 2], it is assumed, that such detail
mathematical modelling of the automation objects will allow us to design
the automated control systems providing the exploitation with minimum
wastes in agreement with the circular economy principles.

[1] Mamalis, A.G., Nevliudov, I., Romashov, Yu.: An approach for numerical simulating
and processing of measured electrical signals from board sensors installed on wheeled
electro-mechanical platforms. Journal of Instrumentation. 16(10), P10006 (2021).

[2] Alyokhina, S., Nevliudov, I., Romashov, Yu.: Safe Transportation of Nuclear Fuel
Assemblies by Means of Wheeled Robotic Platforms. Nuclear and Radiation Safety.
3(91), 43-50 (2021).
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On solving the controllability problem in the case of

a positive constrained control

Valerii Korobov, Kharkiv, Ukraine

Let us consider the linear controllable system

ẋ = Ax + Bu, u ∈ Ω. (1)

The synthesis problem is solved, which is to construct a control u(x) ∈
Ω that transfers an arbitrary point x from the neighborhood V of the
origin to the origin in a finite time. The control u(x) is found using the
controllability function method. Moreover, the controllability function is
found as the time of motion from the point x ∈ V to the origin.

Starting from the works [1, 5], various controllability criteria were con-
sidered for different kinds of constraints on the control. The case of con-
straints with the condition 0 ∈ Ω is considered in [4]. In the case of general
constraints on the control, that is without the requirement 0 ∈ Ω, necessary
and sufficient conditions are given in [3]. In addition to conditions from
[4], the return condition to the origin on some interval [t1, t2] is required.
But controllability criteria do not provide an explicit formula for control.

In this talk we assume that the control domain Ω does not contain 0 as
an interior point; moreover, the point 0 may not belong to the set Ω. We
give an explicit formula for the control using the controllability function
method.

Also, the case when the linear controllable system has a non-autonomous
term is considered.

[1] Brammer R., Controllability in linear autonomous systems with positive controllers,
SIAM J. Control 10, 339–353 (1972)

[2] Korobov V. I. The method of controllability function, R&C Dynamics, 2007: 1-576.

[3] Korobov V.I. Geometric criterion for controllability under arbitrary constraints on
the control. J Optim Theory Appl 134, 161-176 (2007)

[4] Korobov V. I., Marynych A. P., Podolskii E. N. Controllability of linear autonomous
systems in the presence of constraints on the control, Differ. Equ., 15 1136–1142
(1980)

[5] Saperstone S.H., Yorke J.A. Controllability of linear oscillatory systems using positive
controllers, SIAM Journal on Control, 10, 2(1971), 253-262
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On perturbations range in the feedback synthesis

problem for robust linear system

Valerii Korobov, Kharkiv, Ukraine
Tetiana Revina, Kharkiv, Ukraine

We consider the synthesis problem for an autonomous linear system
with continuous bounded unknown perturbations :

ẋ = (A + R(t, x))x + Bu, (1)

where t ≥ 0, x ∈ Q ⊂ Rn, Q is a neighborhood of the origin; u ∈ Rr is
a control satisfying the constraint ∥u∥ ≤ d; A and B are given constant
matrices, R(t, x) = (rij(t, x))ni,j=1.

We assume that the system ẋ = Ax + Bu is completely controllable.
We assume that functions rij(t, x) are unknown functions and

max
i,j

| rij(t, x) |≤ ∆ for all (t, x) ∈ [0,+∞) ×Q.

The problem is to construct a bounded control which does not depend
on perturbation and steers an initial point x0 ∈ Q to the origin in a fi-
nite time (settling-time function) for any perturbations satisfying the con-
straint. Also the problem is to find ∆.

Our approach is based on the Controllability Function Method proposed
by V. I. Korobov [1, 2]. The results show that the control designed by the
Controllability Function Method can guarantee that the trajectory of the
system steers to the origin in a finite time under perturbations. This study
shows the relations between the value of perturbations (i.e., ∆) and the
upper bound of the settling-time function.

As an application of the results given in the talk, the feedback synthe-
sis problem for a robust system in which the Controllability Function is
specified explicitly is solved.

The work was carried out under the support of the N. I. Akhiezer Foun-
dation.

[1] Korobov V. I. The method of controllability function, R&C Dynamics, 576 p (2007).

[2] Korobov V. I. Sklyar G. M. Methods for constructing positional controls, and a
feasible maximum principle, Dif. Equ. 26(11) (1990), 1422–1431.
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Numerical experiments with homogeneous

approximation of nonlinear systems

Marcin Korzeń, Szczecin, Poland
Grigoriy Sklyar, Szczecin, Poland

Jaros law Woźniak, Szczecin, Poland

The homogeneous approximation is a certain kind of simplification of a
nonlinear control system that makes it easier to integrate and also easier
to solve different controllability tasks. A homogeneous approximation sim-
plifies a given system and maintains its main properties. Both systems are
equivalent up to a nonlinear transformation. Having the approximation
and transformation, we can compare the trajectories of both systems with
the same control signals. During the talk, we would like to present the
procedure of homogeneous approximation from a computational point of
view, and we give the numerical experiments with some nonlinear control
systems and their homogeneous approximations. Comparing the system
trajectories, we would like to show and briefly discuss the quality of such
approximation.
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Existence of well-posedness value problem for the

Helmholtz equation

Alexander Makarov, Kharkiv, Ukraine
Anna Chernikova, Kharkiv, Ukraine

The Helmholtz equation

∂2u(x, t)

∂t2
+ ∆u(x, t) = ku(x, t), x ∈ Rn,

where k ∈ R, has a significant impact in mathematical physics and can
occur in electrodynamics and thermodynamics. But this equation is not
Petrovsky well-posed. That is why the Cauchy problem is not well-posed
in the Schwartz space S and in spaces of exponential growth functions.

Let us consider the boundary-value problem for this equation with the
boundary conditions:

u(x, 0) + bu(x, T ) = φ1(x), u′t(x, 0) + bu′t(x, T ) = φ2(x),

where b > 0. It is well-posed in the space S and in spaces of exponential
growth functions as well. Moreover, if k ≥ 0, the boundary value problem
is parabolic. Therefore, its solutions are infinitely differentiable for φj ∈
L2(Rn). Applying the Fourier transform with respect to spatial variables,
we get the boundary value problem:

∂2ũ(s, t)

∂t2
− |s|2∆ũ(s, t) = kũ(s, t),

ũ(s, 0) + bũ(s, T ) = φ̃1(s), ũ′t(s, 0) + bũ′t(s, T ) = φ̃2(s).

The eigenvalues of the characteristic equation are λ1,2(s) = ±
√
k + |s|2. If

k ≥ 0, the solution of the problem has the following form:

ũ(s, t) =
1

(1 + beλT )(1 + be−λT )

×
(

(chλt + b chλ(T − t)) φ̃1(s) +
shλt + shλ(T − t)

λ
φ̃2(s)

)
,

where λ(s) =
√
k + |s|2. Since chλt

expλt ≤ 1, the given solution belongs to the
space S if φj ∈ S. Moreover, since

|ũ(s, t)| ≤ B
(

exp
(

(t− T )
√

|s|2 + k
)

+ exp
(
−t
√

|s|2 + k
))

max
j

|φj(s)|,

the solution u is infinitely differentiable if φj ∈ L2(Rn).
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The effective nilpotency orders in the special

multi-flags

Piotr Mormul, Warsaw, Poland

Special multi-flags (recalled during previous DECT conferences) are lo-
cally nilpotentizable in Sussmann’s sense. That is, weakly nilpotent in the
more modern terminology. More precisely, the germs of rank-(m + 1) dis-
tributions generating special m-flags of given length r are stratified into
so-called singularity classes. They are encoded by words of length r over
the alphabet {1, 2, . . . , m ,m+ 1} starting with letter 1 and such that ev-
ery letter L > 1 in a word has to its left a letter L− 1. (For instance, for
m ≥ 3 the word 1.2.1.4 is not allowed.) The detailed construction of the
singularity classes has been given in [1] (for m = 2) and [2] (for general
m). The number of singularity classes with fixed width m and length r is
approximately 1

(m+1)!(m + 1)r.

To each singularity class C there is associated its Lie algebra l(C) gener-
ated over the reals by a local nilpotent vector fields’ basis of the underlying
distribution. The algebras L(C) are nilpotent of precisely known nilpotency
orders. The aim of the presentation is to give new informations about the
old (going back to the year 2004) algorithm of computing those nilpotency
orders.

A farther future objective would be to prove that all those algebras are
pairwise non-isomorphic.

[1] Mormul P.: Singularity classes of special 2-flags. Symmetry, Integrability and Geom-
etry: Methods and Applications 5, 102, 22 pages (2009).

[2] Mormul, P.: Singularity classes of special multi-flags, I. Proceedings of the Interna-
tional Geometry Center 16, 142-160 (2023).
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Robust stability of a class of switched positive linear

functional differential equations

Nguyen Khoa Son, Hanoi, VietNam
Le Van Ngoc, Hanoi, VietNam

This paper investigates the robustness of exponential stability of a class
of positive switched systems, under arbitrary switching, described by linear
functional differential equations (FDE) of the form

ẋ(t) = A0
σ(t)x(t) +

∫ 0

−h

d[ησ(t)(θ)]x(t + θ), t ≥ 0, σ ∈ Σ, (1)

where Σ is a set switching σ which are piece-wise constant functions
σ : [0,+∞) → {1, 2, . . . , N}. We will measure the stability robust-
ness of such a system (which is considered as a nominal system) subject
to parameter affine perturbations of its constituent subsystems matrices
A0

k, ηk(·), k = 1, 2, . . . , N , by introducing the notion of structured stability
radius. Some formulas for computing this radius, as well as estimating its
lower bounds and upper bounds are established. In the case of switched
linear systems with multiple discrete time-delays or/and distributed time-
delays the obtained results yield tractably computable formulas or bounds
for the stability radius. The extension of the obtained results to non-
positive systems and the class of multi-perturbations has been presented.
Examples are given to illustrate the proposed method.

[1] Liberzon, D.: Switching in Systems and Control. Berlin, Germany: Birkhäuser
(2003).

[2] Son, N.K. and Ngoc, L.V.: Exponential stability analysis for a class of switched
nonlinear time-varying functional differential systems. Nonlinear Analysis: Hybrid
Systems. 44:101177 (2022).
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Virus dynamics model with distributed delay

Alexander Rezounenko, Kharkiv, Ukraine

Qualitative properties of mathematical models of viral infections are
studied. Such models attract much attention during last years, especially
after wide spread of viral diseases, including COVID-19, HIV, hepatitis B
and C. Many viruses continue to be a major global public health issues.

We are interested in a class of virus dynamics model with reaction-
diffusion, logistic growth terms and a general non-linear infection rate
functional response. The cases with and without immune response are
discussed. The model consists of PDEs with delay(s), including the case
of state-selective delay [1, 2]. The type of delay is a distributed analog to
a discrete state-dependent delay. We first investigate conditions of well-
posedness of the delay initial-value problem. Our main mathematical tool
in studying of the asymptotic behaviour of solutions is the quasi-stability
method developed by I.D. Chueshov [3]. We construct a dynamical system
in a Hilbert space and prove the existence of a finite-dimensional global
attractor. To prove the natural for a virus dynamics model dissipativness
of the dynamical system we conduct a parallel study in a Banach space.
The mentioned approach with the parallel study in different spaces was
presented for a viral dynamics model in recent article [4].

[1] A. Rezounenko, J. Wu, A non-local PDE model for population dynamics with state-
selective delay: Local theory and global attractors. Journal of Computational and
Applied Mathematics, 190(1-2), 99-113, (2006). DOI: 10.1016/J.CAM.2005.01.047

[2] A. V. Rezounenko, Partial differential equations with discrete and distributed state-
dependent delays. Journal of Mathematical Analysis and Applications, 326, 1031-
1045 (2007). DOI: 10.1016/j.jmaa.2006.03.049

[3] I.D. Chueshov, Dynamics of Quasi-Stable Dissipative Systems, Springer, Cham,
(2015), DOI: 10.1007/978-3-319-22903-4

[4] A. V. Rezounenko, Viral Infection Model with Diffusion and Distributed Delay:
Finite-Dimensional Global Attractor. Qualitative Theory of Dynamical Systems,
22(1), 11 (2023). DOI: 10.1007/s12346-022-00707-6

https://doi.org/10.1016/J.CAM.2005.01.047
https://doi.org/10.1016/j.jmaa.2006.03.049
https://doi.org/10.1007/978-3-319-22903-4
https://doi.org/10.1007/s12346-022-00707-6
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On the Riesz basis property of the

infinite-dimensional delay differential equations of

the neutral type

Grigorij Sklyar, Szczecin, Poland
Piotr Polak, Szczecin, Poland

Bartosz Wasilewski, Szczecin, Poland

We present results extending some existing ones concerning the differ-
ential delay equations of the neutral type. Namely, we analyze the neutral
delay system of the form

ż(t) = Aż(t− 1) +

∫ 0

−1

A2(θ)ż(t + θ)dθ +

∫ 0

−1

A3(θ)z(t + θ)dθ, (1)

where z(t) takes values in a separable Hilbert space H. For the finite-
dimensional case of H = Cn the system has been thoroughly studied in
terms of stability and stabilizability in [1], [2] and other works. The main
tool for stability and stabilizability analysis used in this works is the ex-
istence of a Riesz basis of subspaces consisting of A-invariant subspaces
where the operator A, which represent the system (1), is of the form

d

dt

(
y(t)
zt(·)

)
=A

(
y(t)
zt(·)

)
, A

(
y

z(·)

)
=

(∫ 0

−1A2(θ)ż(θ)dθ +
∫ 0

−1A3(θ)z(θ)dθ

dz(θ)/dθ

)
where zt(·) = z(t + ·) and the domain of the operator A is given by

D(A) = {(y, z(·)) : z(·) ∈ H1 ([−1, 0];H) , y = z(0) − Az(−1)} ⊂

⊂ H × L2 ([−1, 0];H) .

The space H × L2 ([−1, 0];H) is a Hilbert space. We will present some
results concerning the existence of a Riesz basis of subspaces of the space
H×L2 ([−1, 0];H) consisting of A-invariant subspaces for the more general
separable Hilbert space H, thus extending existing results from [1].

[1] R. Rabah, G.M. Sklyar, A.V. Rezounenko, Stability analysis of neutral type systems
in Hilbert space, J. Differ. Equ., 214 (2005), 391–428.

[2] R. Rabah, G.M. Sklyar, P.Y. Barkhayev, Stability and stabilizability of mixed
retarded-neutral type systems, ESAIM: COCV 18 (3) (2012), 656–692.
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Problem of linearizability for non-autonomous

control systems

Jekatierina Sklyar, Szczecin, Poland
Grigorij Sklyar, Szczecin, Poland

Svetlana Ignatovich, Kharkiv, Ukraine

In the presentation we recall the classical concept of linearization prob-
lem for nonlinear control systems. Further we discuss the development
of this concept to the case of non-autonomous systems obtained by the
authors during the last years [1]–[4]. Namely, we consider the class of
non-autonomous control systems of the form

ẋ = f(t, x) + g(t, x)u, (1)

where f(t, x) g(t, x) are of the class C1([α, β] × Q), Q ⊂ Rn, and u ∈ R1.
We discuss conditions under which there exists a change of variables y =
F (t, x) ∈ C2 that reduces the system (1) to the linear form

ẏ = A(t)y + b(t)u,

where matrices A(t), b(t) are analytic on [α, β]. One of the main steps of
this study is to reduce system (1) to a driftless form

ż = g̃(t, z)u,

which can be regarded as a canonical form suitable for both linear and non-
linear control systems, the same for both autonomous and non-autonomous
cases.

[1] Sklyar, K.: On mappability of control systems to linear systems with analytic matri-
ces. Systems Control Lett. 134 (2019), 104572.

[2] Sklyar, K., Ignatovich, S.: On linearizability conditions for non-autonomous control
systems. Advances in Intelligent Systems and Computing, 2020, 1196 AISC, 625-637.

[3] Sklyar, K.V., Ignatovich, S.Yu.: Invariants of linear control systems with analytic
matrices and the linearizability problem. Journal of Dynamical and Control Systems,
29 (2023), 111-128.

[4] Sklyar, K.V., Ignatovich, S.Y., Sklyar, G.M.: Linearizability problem and invariants
for multi-input non-autonomous control systems. 2023 31st Mediterranean Confer-
ence on Control and Automation, MED 2023, 998-1003.
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Modelling of the wave dynamics in a system for rope

jumping and free falling

Mykyta Sobur, Kharkiv, Ukraine
Sergii Poslavskyi, Kharkiv, Ukraine

We consider discrete mathematical model of the rope system for jumping
and free falling. A viscoelastic description of a climbing rope is used.
The mechanical system under consideration includes two climbing ropes.
One of them is so called base rope (static rope), which is mounted almost
horizontally, and other is a leash (dynamic rope), to which the load is
attached. The main interest for us is the wave dynamics of this system.
Two types of waves can be observed: longitudinal and transverse. Their
traveling and interaction influence the forces arising in the system. The
design of the rope system is created usually in such a way as to minimize
the maximum loads on the jumping person and on the fastening elements.
The 2D model makes it possible to capture the characteristic features of
the complex wave pattern observed during an experimental study of the
braking of the movement of a falling load.

[1] Leuthausser U.: The physics of a climbing rope under a heavy dynamic load. Journal
of sports engineering and technology. 231(2), 125-135. (2017).

[2] Christensen, R.M.: Theory of Viscoelasticity An Introduction. Academic Press, New
York and London, (1971).
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Localization of a solution to a mixed problem of PDE

Kateryna Stiepanova, Kharkiv, Ukraine
Daryna Shevchuk, Kharkiv, Ukraine

Let’s consider the model representative of the problem:

ut = (um)xx ∀(t, x) ∈ (0, T ) × (0,∞), m > 1, T < ∞;

u(0, x) = u0(x) ∀x ∈ [0,∞),

u(t, 0) = f(t) ∀t ∈ [0, T ),

f(t) → ∞ at t → T.

The last condition defines the limit regime with a sharpening (here, the
sharpening time T ). All known results on the boundary conditions with
sharpening were obtained using a method based on the creation of barrier
functions. These techniques limit the solution of the problem within a cer-
tain region and they are mostly associated with various explicit automodel
solutions. However, this approach cannot be applied to equations that do
not admit the corresponding equation theorems.

In this work, we consider a much more difficult Cauchy-Dirichlet prob-
lem, for which an exact sufficient condition for the localization of the solu-
tion. The proof of the effect of localization of the problem for a wide class
of parabolic equations is based on special integral a priori or estimates that
combine the ideas of [1]-[5].

[1] Antontsev, S. N. On the localization of solutions of nonlinear degenerate elliptic and
parabolic equations, Sov. Math., Dokl. 1981. V. 24. P. 420-424.

[2] Diaz J. I., Veron L. Local vanishing properties of solutions of elliptic and parabolic
quasilinear equations, Trans. Amer. Math. Soc. 1985. V. 290. No 2. P. 787-814.

[3] Oleinik O. A., Iosif’yan G. A. An analogue of Saint-Venant’s principle and the unique-
ness of solutions of boundary value problems for parabolic equations in unbounded
domains, Russian Math. Surveys. 1976. V. 31. No 6. P. 153–178.

[4] Akulov V. F., Shishkov A. E. On asymptotic properties of solutions of mixed problems
for quasilinear parabolic equations in unbounded domains, Math. USSR-Sb. 1992. V.
72. No 2. P. 557–567.

[5] Stiepanova K. V., Shishkov A. E. Strong and weakened localization of solutions to
quasilinear parabolic equations, Reports of the National Academy of Sciences of
Ukraine. 2013. V. 7. P. 30-36.
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Return condition for oscillating systems with

constrained positive control

Oleh Vozniak, Kharkiv, Ukraine
Valery Korobov, Kharkiv, Ukraine

In this paper we consider the constrained null-controllability problem
with the assumption that the origin is not an equilibrium point of the sys-
tem. For this problem different results were obtained [1]-[4]. In the paper
[2] the concept of return condition on an interval and the corresponding
criterion were introduced by V.I. Korobov. That condition means that for
some interval I for any T ∈ I we can construct a control uT (t) such that
the trajectory starting from the origin can return there in the time T .

However checking this criterion and finding uT (t) can be rather difficult.
We have considered the oscillating system

ẋ2k−1 = kx2k, ẋ2k = −kx2k−1 + u, k = 1, 2, ..., n, (1)

with piecewise control uT (t) and constraints u ∈ [c, 1] or u ∈ {c, 1}, c > 0.
This problem can be written as the trigonometric momentum problem∫ T

0

u(t)ekit dt = 0, k = 1, 2, ..., n. (2)

In this paper several solutions were proposed. In particular that the
control with only two switch points is enough to solve this problem for
system of any size n:

u(t) =


1
2 , 0 ≤ t ≤ α,

1, α ≤ t ≤ 2π,
1
2 , 2π ≤ 2π + α,

or u(t) =


c, 0 ≤ t ≤ α,

1, α ≤ t ≤ 2π,

1 − c, 2π ≤ 2π + α.

(3)

[1] Bianchini, R. M.: Local Controllability, Rest States, and Cyclic Points, SIAM Journal
on Control and Optimization, Vol. 21, pp. 714–720, 1983.

[2] Korobov, V.I.: Geometric Criterion for Controllability under Arbitrary Constraints
on the Control. J Optim Theory Appl 134, 161–176 (2007). DOI: 10.1007/s10957-
007-9212-2

[3] Margheri, A.: On the 0-local controllability of a linear control system. J Optim
Theory Appl 66, 61–69 (1990). DOI: 10.1007/BF00940533

[4] Zverkin A. M., Rozova V. N.: Reciprocal controls and their applications, Differ.
Uravn., 23:2 (1987), 228–236.
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