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On absolute stability of a class of time-varying switched
nonlinear systems with delay
Nguyen Khoa Son, Ha Noi, VietNam

This paper is devoted to the stability analysis for a class of time-varying
switched nonlinear systems with delay of the form

ẋ(t) = Aσ(t)(t)f(x(t)) +Bσ(t)(t)f(xt), t ≥ 0, σ ∈ Σ+, (1)

where xt = x(t + ·) ∈ C([−h, 0],Rn) with h > 0 being a given time-
delay, Σ+ is the set of admissible switching signals which are assumed to
be piece-wise constant and right-side continuous functions σ : [0,∞)→ N :=
{1, 2, . . . , N} having on each bounded interval a finite number discontinuities
τk, k = 1, 2, . . . , known as the switching instances, Ak(·), Bk(·) ∈ Rn×n are
continuous matrix functions (see e.g. [1, 2, 3, 15] on the stability problems of
switched systems). The nonlinear function f : Rn → Rn is assumed to be of
the so-called Persidskii type, i.e. f is continuous, diagonal

f(x) = f(x1, x2, . . . , xn) = (f1(x1), f2(x2), . . . , fn(xn)),

and satisfies the sector condition

0 < xif(xi) ≤ βix
2
i , ∀xi 6= 0, ∀i ∈ n (2)

where βi > 0 are given positive parameters. Such a nonlinear f is said to be
addmissble sector nonlinearity. Then, cleary, f(0) = 0 and (1) admits the
zero solution x(t) ≡ 0, t ≥ 0. The zero solution of system (1) is said to be
absolute exponential stable (or AES, for short) over Σ+ if for any admissible
switching signal σ ∈ Σ+, any admissible nonlinearity f , and any initial condi-
tion x0 = ϕ, ϕ ∈ C([−h, 0],Rn) the corresponding solution x(t) = x(t, σ, ϕ)
of (1) satisfies

‖x(t)‖ ≤Me−αt‖ϕ‖, ∀t ≥ 0,

where M > 0, α > 0 are certain real numbers. The reader is referred to,
e.g. [6, 7, 8, 10, 14, 17] for the problems on absolute stability with sector
nonlinearities. We are also inerested in a subclass Στa ⊂ Σ+, consisting of
switching signals σ ∈ Σ+ having average dwell time (or ADT, for short)
τa > 0 which means that, for any t > 0, the number Nσ(0, t) of disontinuities
of σ on the interval (0, t] satisfies

Nσ(0, t) ≤ t

τa
, (3)
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(see,e.g. [1, 4]). Finally, for each matrix P ∈ Rn×n we define a Metzler matrix
P̄ by setting p̄ii = pii, p̄ij = |pij|, for i, j = 1, ..., n, j 6= i. The properties
of Metzler matrices can be found in many papers concerning with positive
systems , e.g. [5]. The main result of this paper is the following

Theorem 1 Assume that there exist n-dimensional strictly positive vectors
ξk := (ξk,1, ξk,2, . . . , ξk,n)

>, ξk,i > 0,∀k, i, and a real number α > 0 such that(
Āk(t) + eαh|Bk(t)|

)
Dβξk � −αξk,∀t ≥ 0,∀k ∈ N, (4)

where Dβ is a diagonal matrix defined as Dβ = diag(β1, β2, . . . , βn). Then
the zero solution of the system (1) is AES over the set Στa of switching signals
with ADT τa satisfying

τa > τ∗ :=
ln γ

α
, (5)

where

γ := max
{ξk,i
ξl,i

: k, l ∈ N, i ∈ n
}
. (6)

Moreover, if there exists a strictly positive vector ξ such that (4) holds for
ξk = ξ, k ∈ N , then the zero solution of (1) is AES over the set of switching
signals Σ+.

The proof of the above theorem is based on the comparison principle, that
is quite different from the traditional approach of all presvious works (see,
e.g. [11, 13, 14]) where the method of Lyapunov-Krasovski functionals play
a central role. In particular, if the system (1) is positive and time-invariant,
i.e. Ak(t) ≡ Ak = Āk, Bk(t) ≡ Bk ≥ 0,∀k ∈ N then Theorem 1 implies the
following easily checkable criterion for AES.

Theorem 2 Assume that switched system (1) is positive and time-invariant.
Assume that there exist strictly positive n-dimensional vectors ξk :=
(ξk,1, ξk,2, . . . , ξk,n)

> � 0 such that

(Ak +Bk)ξk � 0, ∀k ∈ N, (7)

Then the zero solution of the system is AES over the set Στa of switching signals
with ADT τa satisfying (5) where γ is defined by (6) and α = mini∈n,k∈N αi,k,
with αk,i being the solutions of the equations, with i ∈ n, k ∈ N ,

n∑
j=1

(
ak,ij + eαhbk,ij + αβ−1i

)
ξk,j = 0. (8)
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Moreover, if there exists a strictly positive vector ξ such that (7) holds for
ξk = ξ, k ∈ N , then the zero solution of (1) is AES over the set of switching
signals Σ+.

The above theorems cover or improve a number of known sufficient condi-
tions of absolute stability obtained by other authors (e.g. [11, 13, 14, 17, 18]),
where only the case ξk = ξ, k ∈ N was considered.

[1] D. Liberzon, Switching in Systems and Control, Birkhauser, Boston, 2003.

[2] R. Shorten, F. Wirth, O. Mason, K. Wulff, C. King, Stability criteria for switched and hybrid systems,
SIAM Review 49 (2007) 545-592.

[3] H. Lin, P.J. Antsaklis, Stability and stabilizability of switched linear systems: A survey of recent results,
IEEE Trans. Automat. Control 54 (2009) 308-332.

[4] J. P. Hespanha, A.S. Morse, Stability of switched systems with average dwell-time, In Proceedings of
the 38th IEEE conference on decision and control, 3(1999) 2655-2660.

[5] F. Knorn, O. Mason, R. Shorten, On linear co-positive Lyapunov functions for sets of linear positive
systems, Automatica 5 (2009) 1943-1947.

[6] E.A. Barbashin, Introduction to the theory of stability, WoltersNoordhoff Publishing, Groningen, 1970.

[7] S.K. Persidskii, Problem of absolute stability, Autom. Remote Control 12 (1969) 1889-1895.

[8] S.K. Persidskii, On the exponential stability of some nonlinear systems, Ukrainian Mathematical Journal
57(2005) 157 - 164.

[9] H. Khalil, Nonlinear Systems, second ed., Prentice-Hall, Inc., Englewood-Cliffs, NJ, 1996.

[10] E. Kaszkurewicz, A. Bhaya, Matrix Diagonal Stability in Systems and Computation, Birkhauser, 2000.

[11] A. Y. Aleksandrov, A. V. Platonov, On absolute stability of one class of nonlinear switched systems,
Autom. Remote Control 69(2008) 1101-1116.

[12] A.Yu. Aleksandrov, Y. Chen, A. V. Platonov, L. Zhang, Stability analysis for a class of switched nonlinear
systems, Automatica 47(2011) 2286-2291

[13] Y. Sun, L. Wang, On stability of a class of switched nonlinear systems, Automatica 49(2013) 305-307.

[14] A. Aleksandrov, O. Mason, Absolute stability and Lyapunov-Krasovskii functionals for switched nonlinear
systems with time-delay, J. Franklin Inst. 351(2014) 4381-4394.

[15] N.K. Son, L.V. Ngoc, On robust stability of switched linear systems, IET Control Theory Appl. 14(2020)
19-29.

[16] J. Zhang, X. Zhao, J. Huang, Absolute exponential stability of switched nonlinear time-delay systems,
J. Franklin Inst. 353(2016) 1249-1267.

[17] A. Aleksandrov, E. Aleksandrova, A. Zhabko, Stability analysis of some classes of nonlinear switched
systems with time delay, Internat. J. Systems Science 48(2017) 2111- 2119.

[18] A. Aleksandrov, On the existence of a common Lyapunov function for a family of nonlinear positive
systems, Systems Control Lett. 147(2021), 104832.
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Controllability problems for wheeled electromechanical
robotic platforms taking into account motion’s

smoothness restrictions
Svitlana Alyokhina, Kharkiv, Ukraine

Igor Nevliudov, Kharkiv, Ukraine
Yurii Romashov, Kharkiv, Ukraine

The controllability problems are widely researched for the robotic wheeled electromechan-
ical platforms, but considering of the motions’ smoothness requirements is actually not re-
searched now. At the same time, such requirements are significantly important for dangerous
and delicate cargoes transportation for example under horizontal transportation of the nuclear
fuel assemblies inside enterprises [1].

Although the linear models can represent only the limited cases of the motions, but these
linear models are really suitable for considering the important controllability problems needed
for engineering applications. So, the linear mathematical model of the wheeled electrome-
chanical platform can be generally represented using the conventional denotation as follows:

ẋ = A · x + B · u, x(t0) = x0. (1)

The naturally needed changes in the motion of the platform during its operation require
building the control signals providing such changes, so we have the controllability problem:

u(t) : x(t1) = x1, t1 − t0 → min. (2)

The motion’s smoothness restrictions [2] allows only the controls providing the limited accel-
eration derivative:

‖C · ẍ‖ ≤ aper, aper > 0. (3)

Exactly the indirect restriction (3) of the control makes difficulties in considering the control-
lability problem (1)-(3).

[1] Alyokhina S., Nevliudov I., Romashov Yu. Safe Transportation of Nuclear Fuel Assemblies by Means of
Wheeled Robotic Platforms // Nuclear and Radiation Safety. – 2021. – 3(91). – pp. 43 - 50.

[2] Klancar G., Loknar M., Blazic S. Towards Time-Optimal CACD Motion Primitives with Smooth Tran-
sitions // IFAC-PapersOnLine. – 2020. – 53(2). – pp. 15544 - 15549.
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Homogeneous approximations for control systems with
output

Darja Andreieva, Kharkiv, Ukraine
Svetlana Ignatovich, Kharkiv, Ukraine

Let a series S =
∑
I

c(ηI)ηI be given, where ηI are iterated integrals, I denotes a multi-

index, I = (i1 . . . ik), 1 ≤ i1, . . . , ik ≤ m, and c(ηI) are scalar coefficients. It is called
realizable if there exists an analytic control system of the form

ẋ =
m∑
i=1

Xi(x)ui, y = h(x),

such that its output y = h(x) for trajectories starting at the origin, x(0) = 0, is represented
by the series S, i.e., y(t) = S(t, u) =

∑
c(ηI)ηI(t, u). It is well known that the series is

realizable if and only if its Lie rank is finite; in this case the Lie rank equals the minimal
possible dimension of the realizing system [1].

We are interested in a homogeneous approximation problem for such series. We apply
a free algebraic technique, which was developed to study homogeneous approximations for
systems without output [2]. In particular, we generalize the concept of a core Lie subalgebra
[3]. In the talk we propose a definition of the core Lie subalgebra for such series and describe
its connection with the core Lie subalgebra of the realizing system. Namely, we present the
following result.

Theorem (i) The core Lie subalgebra of one-dimensional realizable series coincides with the
core Lie subalgebra of its realization.
(ii) Any graded Lie subalgebra of codimension n is a core Lie subalgebra for some one-
dimensional series of Lie rank n.

[1] Isidori, A.: Nonlinear control systems: an introduction. Lecture Notes in Control and Information Sci-
ences, vol. 72. Springer-Verlag, Berlin (1985).

[2] Sklyar, G.M., Ignatovich, S.Yu.: Free algebras and noncommutative power series in the analysis of
nonlinear control systems: an application to approximation problems. Dissertationes Math. (Rozprawy
Mat.) 504, 1–88 (2014).

[3] Ignatovich, S.Yu.: Realizable growth vectors of affine control systems. J. Dyn. Control Syst. 15, 557–585
(2009).
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On stabilizability and controllability of triangular systems
in the singular case

Maxim Bebiya, Kharkiv, Ukraine

Consider the class of nonlinear triangular systems{
ẋ1 = f1(u, x1, . . . , xn),
ẋi = fi(xi−1, . . . , xn), i = 2, . . . , n,

(1)

where u ∈ R is a control. Triangular systems were introduced by V.I. Korobov in 1973 [1]
where it is shown that system (1) is feedback linearizable if there exists a constant a such that
∂fi
∂xi−1

≥ a > 0 for every xi−1 . . . xn (x0 = u).

Our main concern is the singular case in which ∂fn
∂xn−1

= 0 for x = 0 and system (1) is
no longer linearizable. We find constructive solutions to the controllability and stabilizability
problems for system (1) mapping it to the simpler nonlinear system under main requirement

that

∣∣∣∣∂f 1
2k+1
n

∂xn−1

∣∣∣∣ ≥ a > 0 for any xn−1, xn, where a > 0 is a constant, k ∈ N. To this end,

we construct the change of variables z = F (x) and introduce the new control v = G(x, u)
transforming system (1) to the form

ż1 = v,
żi = zi−1, i = 2, . . . , n− 1,
żn = z2k+1

n−1 .
(2)

System (2) is inherently nonlinear system that has uncontrollable first approximation and can
not be mapped to linear system. Constructive stabilizability and 0–controllability of system (2)
are studied in [2],[3]. We propose a new way to construct a control u = u(t, T, x0, x1) steering
corresponding closed-loop system from any initial point x0 to arbitrarily given final point x1 at
any finite time T > 0. We also construct a new class of stabilizing controls applying stability
of cascade systems.

[1] Korobov V.I. Controllability, stability of some nonlinear systems // Differ. Uravn. – 1973.– 9. – pp. 614-
619.

[2] Bebiya M.O. and Korobov V.I., On Stabilization Problem for Nonlinear Systems with Power Principal
Part // Journal of Mathematical Physics, Analysis, Geometry –2016.– 12(2). – pp. 113–133.

[3] Bebiya M.O., Global synthesis of bounded controls for systems with power nonlinearity // Visnyk of
V.N. Karazin Kharkiv National University, Ser. Math., Applied Math. and Mech.– 2015 – 81. – pp. 36-
51.
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Linear Noetherian difference-algebraic
boundary value problems
Sergey Chuiko, Slaviansk, Ukraine

Yaroslav Kalinichenko, Slaviansk, Ukraine

We investigate the problem of finding bounded solutions [1, 2, 3]

z(k) ∈ Rn, k ∈ Ω := {0, 1, 2, ... , ω}

of linear Noetherian (n 6= υ) boundary value problem for a system of linear difference-algebraic
equations

A(k)z(k + 1) = B(k)z(k) + f(k), `z(·) = α, α ∈ Rυ; (1)

here A(k), B(k) ∈ Rm×n are bounded matrices and f(k) are real bounded column vectors,

`z(·) : Rn → Rυ

is a linear bounded vector functional defined on a space of bounded functions. We assume
that the matrix A(k) is, generally speaking, rectangular: m = n. It can be square, but
singular. The problem of finding bounded solutions z(k) of a boundary value problem for a
linear non-degenerate [2]

detB(k) 6= 0, k ∈ Ω

system of first-order difference equations

z(k + 1) = B(k)z(k) + f(k), `z(·) = α ∈ Rυ

was solved by A.A. Boichuk [2]. Thus, the boundary value problem (1) is a generalization of
the problem solved by A.A. Boichuk. We investigate the problem of finding bounded solutions
linear Noetherian boundary value problem for a system of linear difference-algebraic equations
(1) in case 1 ≤ rank A(k) = σ0, k ∈ Ω. We construct necessary and sufficient conditions for
the existence of solution of linear boundary value problem for a system of difference-algebraic
equations in the critical and noncritical case [3].

[1] Boichuk A. A., Samoilenko, A. M. Generalized Inverse Operators and Fredholm Boundary-value Prob-
lems, 2-nd edition, Walter de Gruyter GmbH & Co KG, 2016.

[2] Boichuk, A.A. Boundary-value problems for systems of difference equations, Ukrainian Mathematical
Journal, 1997, 49, 6, 930–934.

[3] Chuiko S.M., Chuiko E.V., Kalinichenko Y.V. Boundary-value problems for systems of linear difference-
algebraic equations, Journal of Mathematical Sciences, 2021, 254, 2, 318–333.
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On of solving nonlinear integral-differential boundary
value problems by the of Newton-Kantorovich method

Sergey Chuiko, Slaviansk, Ukraine
Vlada Kuzmina, Slaviansk, Ukraine

We are investigating the problem of constructing a solution

y(t) ∈ D2[a; b], y′(t) ∈ L2[a; b]

nonlinear Noether (n 6= p) integral-differential system

y′(t) = A(t)y(t) + Φ(t)

∫ b

a

F (y(s), y′(s), s) ds+ f(t), (1)

that satisfy the boundary condition [1, 2, 3]

`y(·) = α, α ∈ Rp. (2)

We seek a solution of the Noetherian boundary value problem (1), (2) in a small neighborhood
of solution

y0(t) ∈ D2[a; b], y′0(t) ∈ L2[a; b]

of the generating problem

y′0(t) = A(t)y0(t) + f(t), `y0(·) = α. (3)

Here

A(t) ∈ L2
n×n[a; b] := L2[a; b]⊗ Rn×n, Φ(t) ∈ L2

n×m[a; b], f(t) ∈ L2[a; b];

`y(·) : D2[a; b] → Rp —linear bounded vector functional defined in space D2[a; b] n-
dimensional absolutely continuous on a segment [a, b] functions. Nonlinear vector-function
F (y(t), y′(t), t) twice continuously differentiable in the small neighborhood of the solution
y0(t) generating boundary value problem (3), twice continuously differentiable with respect to
y′0(t), and continuous in the independent variable t on the segment [a, b].

[1] Boichuk A. A., Samoilenko, A. M. Generalized Inverse Operators and Fredholm Boundary-value Prob-
lems, 2-nd edition, Walter de Gruyter GmbH & Co KG, 2016.

[2] Samoilenko A.M., Boichuk A.A., Krivosheya S.A. Boundary value problems for systems of integro-
differential equations with Degenerate Kernel, Ukrainian Mathematical Journal, 1996, 48, No. 11, 1785
— 1789.

[3] Chuiko S.M., Chuiko A.S., Chechetenko V.O. On of solving nonlinear Noether integral-differential bound-
ary value problems by the of Newton-Kantorovich method, Uzhgorod Mathematical Papers, 2018, 32,
147 — 158.
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Nonlinear degenerate differential-algebraic
boundary-value problems
Sergey Chuiko, Slaviansk, Ukraine

Olga Nesmelova, Slaviansk, Ukraine

We will study the problem of construction of solutions

z(t, ε) : z(·, ε) ∈ C1[a, b], z(t, ·) ∈ C[0, ε0]

of the nonlinear differential-algebraic boundary-value problem [1, 2]

A(t)z′(t, ε) = B(t)z(t, ε) + f(t) + εZ(z, t, ε), `z(·, ε) = α + ε J(z(·, ε), ε). (1)

We will seek the solutions of the boundary-value problem (1) in a small neighborhood of a
solution z0(t) ∈ C1[a, b] of the generating Noetherian (n = q) boundary-value problem [3]

A(t)z′0(t) = B(t)z0(t) + f(t), `z0(·) = α. (2)

Here, A(t), B(t) ∈ Cm×n[a, b] are continuous matrices, f(t) ∈ C[a, b] is a continuous vec-
tor; Z(z, t, ε) is a nonlinear function which is continuously differentiable with respect to the
unknown z(t, ε) in a small neighborhood of a solution of the generating problem, continuous
in t ∈ [a, b], and continuous in a small parameter; `z(·, ε) and J(z(·, ε), ε) are, respectively, a
linear and nonlinear vector functionals, `z(·, ε), J(z(·, h, ε), ε) : C[a, b(ε)] → Rq, Moreover,
the second functional is continuously differentiable with respect to the unknown z(t, ε) and
continuous in the small parameter ε in a small neighborhood of a solution of the generating
problem (2) and on the segment [0, ε0]. The nonlinear differential-algebraic boundary-value
problem (1) is a generalization of numerous statements of nonlinear boundary-value problems
[1]. We will study the case of degeneration [3] of the generating boundary-value problem
(2), namely: PA∗(t) 6= 0; here, PA∗(t) is the orthoprojector [1]: PA∗(t) : Rm → N(A∗(t)).
Generally speaking, the degenerate system (2) is not solvable relative to the derivative. The
necessary and sufficient conditions of solvability of nonlinear differential-algebraic boundary-
value problem (1) and a convergent iterative scheme of construction of approximations to their
solutions are found.

[1] Boichuk A. A., Samoilenko, A. M. Generalized Inverse Operators and Fredholm Boundary-value Prob-
lems, 2-nd edition, Walter de Gruyter GmbH & Co KG, 2016.

[2] Chuiko S.M., Nesmelova O.V. Nonlinear boundary-value problems for degenerate differential-algebraic
systems, Journal of Mathematical Sciences, 2021, 252, 4, 799–803.

[3] Chuiko S.M. A generalized Green operator for a linear Noetherian differential-algebraic boundary value
problem, Siberian Advances in Mathematics, 2020. 30, 177–191.
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Construction of invariant relations in the problem of
estimating the speed of oscillations of oscillatory

networks on incomplete information
Iryna Dmytryshyn, Slavyansk, Ukraine

The problem of studying the collective behavior of multiscale dynamic processes is of
fundamental importance for understanding the basic laws of synchronous dynamics with os-
cillations. This problem allows practical implementation in many problems of biology and
mechanics, described using cyclic processes [1]. The problem of velocities determination for
interconnected of systems described by the Lienar equations by known data is considered as
observation problem in work. A new method – a synthesis of invariant relations [2] is used to
design nonlinear observer. The method allows us to represent unknowns as a function of known
quantities. The scheme of the construction of invariant relations consists in the expansion of
the original dynamical system by equations of some controlled subsystem (integrator). Control
in the additional system is used for the synthesis of some relations that are invariant for the
extended system and have the attraction property for all of its trajectories. Such relations are
considered in observation problems as additional equations for unknown state vector of initial
oscillators ensemble. To design the observer, first we introduce a observer for unique Van der
Pole oscillator and prove its exponential convergence. This observer is then extended on sev-
eral coupled Van der Pole oscillators. The performance of the proposed method is investigated
by numerical simulations [3].

[1] Kuznetsov A.P. The phenomenon of the van der Pol equation. // News of universities. Applied nonlinear
dynamics. –2014.– 22 (4).–pp. 3-42.

[2] Zhogoleva N.V., Shcherbak V.F. Synthesis of additional relations in inverse control problems. // Trudy
IPMM NAN Ukrainy. – 2015.– 29.–pp. 69-76.

[3] Shcherbak V.F., Dmytryshyn I.S. Estimation of oscillation velocities of oscillator network. // Trudy
IPMM NAN Ukrainy. –2018.– 32.–pp. 182-189.
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Mathematical model of solid fuel tablet combustion
Veronika Dushkevych, Kharkiv, Ukraine

Sergii Poslavskyi, Kharkiv, Ukraine

A one-dimensional math model of stationary solid fuel tablet combustion is studied. A
state of constant flame intensity means a constant speed of the sublimation front in the
tablet. The model takes into account the processes of heat transfer and the seepage of
sublimation products through the pores. These processes are described by a system of partial
differential equations with certain boundary conditions. The problem is a generalization of the
classical Stefan problem for the case of a gas phase moving through a porous medium. We
are interested in minimizing the amount of unburned tablet residues under certain conditions,
for example, while limiting the possible porosity of the tablet.
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The first and second kind matrix polynomials associated
with the matrix Hamburger moment problem

Yury Dyukarev, Kharkiv, Ukraine

Let an infinite sequence (sl)
∞
l=0 of matrices from Cm×m be given and for all j ≥ 0 the block

Hankel matrices Hj =
(
sl+k

)j
l, k=0

are positive. We associate the matrix Hamburger moment

problem with the matrix sequence (sl)
∞
l=0. This means, we want to describe all Hermitian

m×m matrix measures σ such that

sl =

∫
R
tlσ(dt), l ≥ 0. (1)

Using the first and second kind matrix polynomials Pj and Qj (see [1]), we construct the
infinite matrix columns

π(z) = col (P0(z), P1(z), P2(z), . . .), ξ(z) = col (Q0(z), Q1(z), Q2(z), . . .).

We consider infinite matrix column vectors V = col (V0, V1, V2, . . . ), Vj ∈ Cm×m. Denote by
`2(Cm×m) the set of all matricx columns V for which the matrix series

∑∞
j=0 V

∗
j Vj converges.

The following theorem is the main result of this talk (see [1]).

Theorem Let the matrix Hamburger moment problem (1) be given. Then the following
statements (1)-(5) are equivalent:

(1) The moment problem (1) is completely indeterminate (see [1]).
(2) For some point z0 ∈ C \ R the column π(z0) belongs to `2(Cm×m).
(3) For some point z0 ∈ C \ R the column ξ(z0) belongs to `2(Cm×m).
(4) For some x0 ∈ R both columns π(x0) and ξ(x0) belong to `2(Cm×m).
(5) For all z ∈ C both columns π(z) and ξ(z) belong to `2(Cm×m).
Furthermore, the following statements hold true:
(6) If for some x0 ∈ R and some non-null vector φ ∈ Cm both infinite column vectors

π(x0)φ and dπ
dx

(x0)φ belong to the Hilbert space `2(Cm), then the matrix Hamburger moment
problem (1) is not completely determinate.

(7) If for some x0 ∈ R and some non-null vector φ ∈ Cm both infinite column vectors
ξ(x0)φ and dξ

dx
(x0)φ belong to the Hilbert space `2(Cm), then the matrix Hamburger moment

problem (1) is not completely determinate.

[1] Dyukarev Yu.M. On conditions of complete indeterminacy for the matricial Hamburger moment problem,
Complex function theory, operator theory, Schur analysis and systems theory, Oper. Theory Adv. Appl.
vol. 280, Birkhäuser/Springer-Cham, 2020: 327–353.
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On controllability problems for the heat equation with
variable coefficients on a half-axis

Larissa Fardigola, Kharkiv, Ukraine
Kateryna Khalina, Kharkiv, Ukraine

We consider the following control system

wt =
1

ρ
(kwx)x + γw, x ∈ (0,+∞), t ∈ (0, T ), (1)

w(0, ·) = u, t ∈ (0, T ), (2)

w(·, 0) = w0, x ∈ (0,+∞). (3)

Here T > 0 is a constant; u ∈ L∞(0, T ) is a control; ρ, k, γ, and w0 are given functions.
We also assume ρ, k ∈ C1[0,+∞) are positive on [0,+∞), (ρk) ∈ C2[0,+∞), (ρk)′(0) = 0,
and σ(x) =

∫ x
0

√
ρ(|ξ|)/k(|ξ|) dξ → ±∞ as x → ±∞. In addition, we assume Q(k, ρ) −

γ ∈ L∞(0,+∞)
⋂
C1[0,+∞) and σ

√
ρ/k (Q(k, ρ)− γ) ∈ L1(0,+∞), where Q(k, ρ) =√

k/ρ
(√

k/ρ(kρ)′/(4kρ)
)′

+
(√

k/ρ(kρ)′/(4kρ)
)2

. We consider control system (1)–(3) in

modified Sobolev spaces.
It is proved that each initial state of control system (1)–(3) is approximately controllable to

any target state in a given time T > 0. In the case of constant coefficients (ρ = k = 1, γ = 0),
this result has been obtained earlier in [1]. If an initial state of the control system is null-
controllable (i.e., if the target state is the origin), then the initial state is the origin . In the
case of constant coefficients (ρ = k = 1, γ = 0), this result has been obtained earlier in [1].

[1] L. Fardigola and K. Khalina, Reachability and Controllability Problems for the Heat Equation on a
Half-Axis, J. Math. Phys. Anal. Geom. 15 (2019), 57–78.
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Linear differential equations in the module of
copolynomials

Sergey Gefter, Kharkiv, Ukraine
Aleksey Piven’, Kharkiv, Ukraine

Let K be an arbitrary commutative ring with identity, K[x] is the ring of polynomials with
coefficients in K and K[x]′ is a module of homomorphisms (K-linear mappings) from K[x]
to K. By a copolynomial over the ring K we mean an element of the module K[x]′. The
derivative T ′ of a copolynomial T is defined in the same way as in the classical theory of
generalized functions: (T ′, p) = −(T, p′), p ∈ K[x]. We have studied some linear ordinary
differential equations and partial differential equations in the module K[x]′. We presents one
of these results here.

Theorem Let a be an invertible element of the ring K and b, c ∈ K. Then for any copoly-
nomial T ∈ K[x]′ there exists a unique solution w ∈ K[x]′ to the equation

cw′′ + bw′ + aw = T.

This solution has the form

w =
∞∑
n=0

[n2 ]∑
j=0

(−1)n−jCj
n−ja

j−n−1bn−2jcjT (n),

where the series converges in a natural weak topology on K[x]′.

The research of the first named author was supported by the National Research Foundation
of Ukraine funded by Ukrainian State budget in frames of project 2020.02/0096 “Operators
in infinite-dimensional spaces: the interplay between geometry, algebra and topology”.

[1] Gefter S.L., Piven’ A.L. Implicit linear differential-difference equations in the module of formal generalized
functions over a commutative ring.// J. Math. Sci.– 2021. – 255(4). – pp. 409–422.

[2] Gefter S.L., Piven’ A.L. Linear partial differential equations in module of formal generalized functions
over commutative ring.// J. Math. Sci. – 2021. – 257(5). – pp. 579–596.
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Linear differential equations in the ring of formal power
series

Anna Goncharuk, Kharkiv, Ukraine
Sergiy Gefter, Kharkiv, Ukraine

Let us consider the differential equation with real coefficients

amw
(m)(x) + am−1w

(m−1)(x) + . . .+ a1w
′(x) + a0w(x) = f(x). (1)

It is known (see [1, §5, 22.2]), that of the sum of the series

w(x) =
∞∑
i=0

cif
(i)(x), (2)

where ci are the coefficients of

(ams
m + am−1s

m−1 + . . .+ a1s+ a0)−1 = c0 + c1s+ c2s
2 + . . .

solves the non-homogeneous equation if some convergence conditions hold.
Let K be an integral domain, R is the quotient field of K, a0, . . . , am ∈ K and

f(x) ∈ K[[x]]. Consider a problem of finding the function w(x) ∈ K[[x]], which satisfied
the differential equation (1).

Theorem Suppose a0 6= 0. If f(x) is a polynomial from K[x] then Equation (1) has a
unique solution from R[x], and the solution has the form (2).

If f(x) is a formal power series, but not a polynomial, the sum (2) is not a well-defined formal
power series. By previous theorem, the equation in this case has no polynomial solution, but
it still can has a solution from K[[x]]. The following theorem gives us a sufficient conditions
for existing and uniqueness of the solution from K[[x]].

Theorem Suppose K is a valuation ring of a field F with a non-Archimedean valuation | · |.
If |a0| = 1 and |ai| < 1 for any 1 ≤ i ≤ m, then the series (2) is well-defined and it is a
unique solution of the equation (1) from K[[x]].

The research was supported by the National Research Foundation of Ukraine funded by Ukrainian

State budget in frames of project 2020.02/0096 “Operators in infinite-dimensional spaces: the

interplay between geometry, algebra and topology”.

[1] Kamke E. Differentialgleichungen Lösungsmethoden und Lösungen, I. —Wiesbaden: Springer Fachme-
dien Wiesbaden GmbH, 1979, 246 p.
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Application of energy method for the analysis of
technological modes the processes of precise stamping by

extrusion
Natalya Hrudkina, Kramatorsk, Ukraine

The study is aimed at solving an scientific and technical problem of improving the efficiency
of plastic deformation processes on the basis of the development of analysis methods of precise
volumetric stamping processes by extrusion [1]. Research consists in the development of a
complex of kinematic modules to simulate the flow of metal taking into account the design
features of the tool in the form of elements of transition sections. The possibilities of the energy
method are developed due to the designing of kinematic modules of trapezoidal and triangular
shapes, recommendations are given for the rationality of their usage [2]. Restrictions on the
shapes of curves describing the boundaries of kinematic modules of triangular and trapezoidal
shapes and configurations of adjacent modules are revealed. For elimination the problem of
the impossibility of using a quarter of a circle as an boundary for a kinematic trapezoidal
module, it is proposed to use an approximate function whose deviations in the length of the
arc do not exceed 0.8 percent [3]. It significantly expands the possibilities of using the energy
method for modeling processes with a tool configuration in the form of edges and rounding.
Technological recommendations for design of the processes of precise stamping by extrusion
are developed in compliance with the main stages of process development on the basis of the
classification of kinematic modules. Technical solutions and methods, the developed modules
of the software implementation of the processes were transferred to a number of enterprises
and are used in the research works of the Donbass State Engineering Academy.

[1] Hrudkina N., Aliieva L., Abhari P., Markov O., Sukhovirska L. Investigating the process of shrinkage
depression formation at the combined radial-backward extrusion of parts with a flange. // Eastern-
European Journal of Enterprise Technologies. – 2019.– 5/1 (101). – pp. 49-57.

[2] Hrudkina N. S., Aliieva L. I. Modeling of cold extrusion processes using kinematic trapezoidal modules.
// FME Transactions. – 2020.– 48( 2).– pp. 357-363.

[3] Aliieva L., Hrudkina N., Aliiev I., Zhbankov I., Markov O. Effect of the tool geometry on the force mode
of the combined radial-direct extrusion with compression. // Eastern-European Journal of Enterprise
Technologies. –2020.– 2/1 (104).– pp. 15-22.
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Pullback and forward dynamics of nonautonomous
difference equations: Basic constructions

Huy Huynh, Klagenfurt, Austria
Christian Pötzsche, Klagenfurt, Austria
Peter E. Kloeden, Tübingen, Germany

In order to comprehensively capture the long-term behaviour of nonautonomous difference
equations, both pullback and forward attractors as well as forward limit sets are constructed for
general infinite-dimensional nonautonomous dynamical systems in discrete time and complete
metric spaces. While the theory of pullback attractors is well-established, the present novel
approach is needed in order to understand their future behaviour.

More complicated equations and the behaviour of their attractors under spatial discretisa-
tion will be tackled in future papers.

[1] Atkinson K. E. A survey of numerical methods for solving nonlinear integral equation.// J. Integr. Equat.
Appl. – 1992 – 4(1) – pp. 15 - 46.

[2] Carvalho A. N., Langa J. A., Robinson J. C. Attractors for infinite-dimensional non-autonomous dynam-
ical systems.// Applied Mathematical Sciences 182, Springer, Berlin etc. – 2012.

[3] Cui H., Kloeden P. E., Yang M. Forward omega limit sets of nonautonomous dynamical systems.//
Discrete Contin. Dyn. Syst. (Series B) – 2019 – 13 – pp. 1103 - 1114.

[4] Hale J. K. Asymptotic behaviour of dissipative systems.// Mathematical Surveys and Monographs 25,
AMS, Providence, RI – 1988.

[5] Kloeden P. E. Pullback attractors in nonautonomous difference equations.// J. Difference Equ. Appl. –
2000 – 6(1) – pp. 33 - 52.

[6] Kloeden P. E., Lorenz T. Construction of nonautonomous forward attractors.// Proc. Am. Math. Soc.
– 2016 – 144(1) – pp. 259 - 268.

[7] Kloeden P. E., Pötzsche C., Rasmussen M. Limitations of pullback attractors for processes.// J. Differ-
ence Equ. Appl. – 2012 – 18(4) – pp. 693 - 701.

[8] Kloeden P. E., Rasmussen M. Nonautonomous dynamical systems.// Mathematical Surveys and Mono-
graphs 176 – AMS, Providence, RI – 2011.

[9] Kot M., Schaffer W. M. Discrete-time growth-dispersal models.// Math. Biosci. – 1986 – 80 – pp. 109
- 136.

[10] Pötzsche C. Geometric theory of discrete nonautonomous dynamical systems.// Lect. Notes in Math.,
Volume 2002, Springer, Berlin etc. – 2010.
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The identification of the rules processes’ regulation
during restoration (regeneration) of dynamic homeostasis

by methods of Adaptive Dynamic Programming
Valeriia Karieva, Kharkiv, Ukraine

Sergey Lvov, Kharkiv, Ukraine

Liver regeneration is one of the most captivating phenomena in medicine.The identification
of the main dependencies that determine the strategy of liver regeneration is one of the main
problems in the regenerative medicine. The mathematical model that qualitatively describes
the processes of liver regeneration in explicit dependence on the control parameters is devel-
oped [1]. This model represents the processes of replication, polyploidization, binuclear cells,
hyperplasia, effects of toxic factors, apoptosis, cell death and the effects of secondary toxicity.

The dynamics of populations of liver cells is given by the equation:
x(t+ 1) = f(x(t), τ(t), λ(t)), where x(t) - types of functional liver cells at moment t, τ(t) -
given function of external toxicity, λ(t) - control parameters.

The generalized liver function index is Φ(t) =
∑m

i=0 ci(xi(t), τ(t)), where ci - own index
of functionality for cell type xi(t). 0 ≤ Φ(t) ≤ 1, where 0 denotes a dead organism and 1
is the most functional organism. Therefore the change of the organism’s functional state is
described by the equation: Φ̃(t+ 1) = Ψ(τ(t),Φ(t)).

Numerical calculations confirm that the mathematical model corresponds to biological
processes for different strategies of liver regeneration[2]. For the feedback control of liver
regeneration system it is proposed to use a family of techniques known as Approximate or
Adaptive Dynamic Programming (also known as Neurodynamic Programming)[3].

[1] Karieva V. V., Lvov S. V. Mathematical model of liver regeneration processes: homogeneous approx-
imation. Visnyk of V.N.Karazin Kharkiv National University Ser. “Mathematics, Applied Mathematics
and Mechanics” – 2018. – Vol. 87. – pp. 29-41.

[2] Karieva V. V., Lvov S. V., Artyukhova L. P. Different strategies in the liver regeneration processes.
Numerical experiments on the mathematical model. Visnyk of V.N.Karazin Kharkiv National University
Ser. “Mathematics, Applied Mathematics and Mechanics” – 2020. – Vol. 91. – pp. 36-44.

[3] Lewis Frank L., Vrabie D. Reinforcement Learning and Adaptive Dynamic Programming for Feedback
Control. IEEE Circuits and Systems Magazine. – 2009. – Vol. 9, No.3 – pp. 32 - 50.
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The large-time asymptotics for the modified
Camassa–Holm equation on a non-zero background

Iryna Karpenko, Kharkiv, Ukraine
Dmitry Shepelsky, Kharkiv, Ukraine

We consider the initial value (Cauchy) problem for the modified Camassa–Holm (mCH)
equation:

mt +
(
(u2 − u2

x)m
)
x

= 0, m := u− uxx, t > 0; −∞ < x < +∞,

u(x, 0) = u0(x), −∞ < x < +∞,

assuming that u0(x) → 1 as x → ±∞ and that the time evolution preserves this behavior:
u(x, t)→ 1 as x→ ±∞ for all t > 0.

In [1], we have developed the Riemann–Hilbert formalism for this problem, which allowed
us to represent the solution of the Cauchy problem in terms of the solution of an associated
Riemann–Hilbert factorization problem. The present work (see also [2]) aims at the large-
time asymptotic analysis of solution of the Cauchy problem mentioned above by the nonlinear
steepest descent method, based on the developed Riemann–Hilbert formalism. Particularly,
we show that in the solitonless case, the asymptotics in two sectors of the (x, t) half-plane,
1 < ζ := x

t
< 3 and 3

4
< ζ < 1, where the deviation from the background value is nontrivial,

is as follows:
• 1 < ζ < 3: u(x, t) = 1 + C1√

t
cos {C2t+ C3 ln t+ C4}+ o(t−1/2);

• 3
4
< ζ < 1: u(x, t) = 1 +

∑
j=0,1

C
(j)
1√
t

cos
{
C

(j)
2 t+ C

(j)
3 ln t+ C

(j)
4

}
+ o(t−1/2),

where Ci, C
(j)
i are functions of ζ specified in terms of the scattering data, which in turn are

uniquely specified by the initial data for the Cauchy problem.
In the remaining sectors x

t
> 3 and x

t
< 3

4
, u(x, t) decays rapidly (exponentially fast) to 1.

[1] Boutet de Monvel A., Karpenko I., Shepelsky D. A Riemann-Hilbert approach to the modified Camassa–
Holm equation with nonzero boundary conditions.//J. Math. Phys. – 2020. – 61(3). – 031504, 24.

[2] Boutet de Monvel A., Karpenko I., Shepelsky D. The modified Camassa-Holm equation on a nonzero
background: large-time asymptotics for the Cauchy problem.//Pure and Applied Functional Analysis
(accepted); arXiv:2011.13235
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Operator-Theoretic Proof of Arnold’s Theorems of
Alternation and Non-oscillation for Differential Equations

of Even Order with Operator Coefficients
Aleksandr Kholkin, Mariupol, Ukraine

For differential equations with operator coefficients in the joint works by F.S. Rofe - Beke-
tov and the author studied the interplay between spectral and oscillatory properties of such
problems [1] - [3]. The interesting topological interpretation of Sturm’s theorems for the
matrix Sturm - Liouville equation with real coefficients was considered by V.I. Arnold [4].

In the present work, we consider self- adjoint differential equations of an arbitrary even
order with operator coefficients from B (H) (H - separable Hilbert space)

l [y] =
n∑
k=1

(−1)k
{(
pky

(k)
)(k)
− i

2

[(
qky

(k)
)(k−1)

+
(
q∗ky

(k−1)
)(k)
]}

+

+p0 (x) y = λW (x) y, a 6 x 6 b <∞,

where the coefficients pk (x) = p∗k (x) , qk (x) depend continuously in the uniform sense on
x together with their derivatives up to the order k inclusively, and pn (x) >> 0, W (x) =
W ∗ (x) >> 0, y (x)−the vector is functions with values in H. An oscillation theorem is
proved for such equations in the case of a boundary condition of the general form. Using
this theorem, a generalization of Arnold’s alternation theorem is obtained. It is shown that
Arnold’s non - oscillation theorem for an equation of arbitrary even order in the corrected
form follows from [2] - [3]. This is proved by the operator-theoretic method. A generalization
and a correction of theorems of zeros for differential equations of an arbitrary even order with
operator-valued coefficients were obtained. There, a variety of Arnold’s theorem of comparison
was established as well.

[1] Rofe-Beketov F.S , Kholkin A.M. On the connection between spectral and oscillatory properties of the
Sturm - Liouville matrix problem // Mathematics of the USSR - Sbornik.– 1977. – 312(3). – pp. 365
-378.

[2] Rofe-Beketov F.S , Kholkin A.M. The connection of spectral and oscillatory properties of systems of any
order // Dokl. Akad. Nauk SSSR. – 1981. – 261(3). – pp. 551 - 555.

[3] Rofe-Beketov F.S , Kholkin A.M. Spectral analysis of differential Operators. Interplay between Spectral
and Oscillatory properties, World Scientific- New Jersey, London, Singapore, Beijing, Shanghai, Hong
Kong, Taipei, Chennai, 2005: 1-462.

[4] Arnold V.I. The Sturm theorems and symplectic geometry // Funk. Anal. Pril. – 1985. – 19(4). –
pp. 1-10.
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Big Data analysis and mathematical modeling of
Covid-19

Natalya Kizilova, Kharkiv, Ukraine
Daria Kulik, Kharkiv, Ukraine

Statistical analysis of the time series on covid-19 available from the open datasets, and
mathematical modeling of the complex nonlinear dynamics of the number of healthy S(t),
exposed E(t), quarantined Q(t), infected I(t), active A(t), vaccinated V (t), recovered R(t)
and dead D(t) individuals have been a subject for intense studies in 2020-2021 aimed at
stability analysis, controllability and detailed prognosis of the pandemic in different countries
[1, 2].

Here a brief review on the existing mathematical models in the form

dNj

dt
= F (N1(t− τ1), N2(t− τ2), ..., Nn(t− τn)) , (1)

where Nj(t), j = 1, 2, ...n are the measured values of E(t), I(t), A(t), R(t), D(t), τj(t), j =
1, 2, ...n are the corresponding time delays, is given, including the most popular S − I − R,
S − I −R− S, S − E − I −R− S, S − E − I −Q−R models without/with time delay.

Statistical analyses of the time series on 3-4 pandemic ’waves’ in the Ukraine and neighbor
European countries have been carried out. It was shown, the main peaks in the daily measured
I(t) and D(t) curves very well correlated for the second and third ’waves’ when the time delay
is subtracted. The ’nearest neighbor’ method, and cross-correlation studies have been used
for classification and cluster analysis of the covid19 dynamics in different countries.

It was shown, the time delay dynamics between I(t) and D(t) curves can be described
by a corrected S − E − I − R − S model without time delay. The model parameters in
the S − E − I − R − S model (1) have been estimated based on the literature published
for different countries [1, 2]. It was shown, the criterion of stability of the ODE system (1)
Ξ < ξ∗ corresponds to the reproduction rate coefficient which is important for the decision on
local antiepidemic measures.

[1] Mathematical Analysis for Transmission of COVID-19. Eds: N.H. Shah, M. Mittal (Eds.). Springer. 2021.

[2] Kostecka V., Kizilova N. Mathematical modeling of the covid-19 pandemic. V.N. Karazin Kharkiv Uni-
versity Visnyk. Ser. Mathematical Modeling. – 2020. – 48. – pp. 65-71.
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Mathematical modeling of water management on urban
territories: nonlinear dynamics, stability and

controllability
Natalya Kizilova, Kharkiv, Ukraine
Natalya Rychak, Kharkiv, Ukraine

Mathematical modeling of the heat, mass and biomass transfer in ecosystems is based on
the ODEs for different compartments like atmosphere, surface water (SW), groundwater (GW),
soils, used water (UW), saved water (SW), controlled water (CW), etc [1]. Recently, global
climate change produced fast heat waves and gradual temperature rise, acceleration of the ice
melting that accompanied by catastrophic events like tornado, flooding, draught, lack of food
and drinking water [2]. Since > 50% of population live in the cities, the water management
on urban territories based on data analysis and mathematical modeling is important to predict
possible future risks [3].

Here a brief review on the existing system dynamics models in the form

dW

dt
= k1W1(t) + k2W2(t) + k3W3(t)− k4W4(t)− k5W5(t), (1)

where ~W (t) = (SW (t), GW (t), CW (t), UW (t), LW (t)), W (t) is the water contents, k1−5

are constant values known from local statistical reports, is given.
The geophysical, water, air and soil pollution data on the territory of Kharkiv city and

Kharkiv region have been studied, and the statistical regularities between the climate, weather,
hydrological and ecological data have been obtained. The computed values k1−5 have been
used for adjustment of the model (1) to the local environmental conditions. Stability of
the obtained system of ODEs for small excitations have been studied, and the criteria of
its irreversible behavior have been derived. The results will be used for water management
planning at the governmental level at the conditions of further local climate changes.

[1] Burkett V.R., Wilcox D.A., Stottlemyer R., et al. Nonlinear dynamics in ecosystem response to climatic
change. Ecological Complexity 2 (2005) 357-394.

[2] Kizilova N., Rychak N. Probabilistic models of water maangement on urban territories. Kyiv National
University Visnyk. Ser. Physics and mathematics. – 2020. – 4. – pp. 20-27.

[3] Kizilova N., Rychak N. Information support of water management systems on urban areas. Systems of
Information Treatment. – 2020. – 4. – pp. 37-47.



September 27-29, 2021, Kharkiv, Ukraine 27

The feedback synthesis for motion of a mass on an ideal
spring

Valerii Korobov, Kharkiv, Ukraine
Tetiana Revina, Kharkiv, Ukraine

Let us consider a material point attached to a spring sliding on a frictionless surface. We
suppose that the control is attached to the material point:{

ẋ1 = x2,
ẋ2 = −x1 + rx1 + u.

(1)

Here t ≥ 0, (x1, x2) ∈ Q ⊂ R2 is a state, Q is a neighborhood of the origin, u is a scalar
control (controllable engine power) satisfying the constraint |u| ≤ 1, the value r is an unknown
constant bounded perturbation which satisfies the preassigned constraint |r| ≤ ∆ < 1. The
approach presented in the talk is based on the Controllability Function method proposed by
V.I. Korobov in 1979.

Theorem Let 0 < γ < 1 and the Controllability Function Θ = Θ(x1, x2) be the unique
positive solution to Eq.

2
3
(2Θ4 − 2Θ2 + cos(2Θ) + 2Θ sin(2Θ)− 1) = 4x2

1(2Θ2 − cos(2Θ) + 1)+
+8x1x2(2Θ− sin(2Θ)) + 4x2

2(2Θ2 + cos(2Θ) + 1).
(2)

Let the solvability domain be the ellipsoid Q defined by Q = {(x1, x2) : Θ(x1, x2) ≤ c}. Let

∆ =
(1− γ)

0.95 + 0.0625
√

64c2 + 96c+ 87.84
. (3)

Then for all |r| ≤ ∆ in the ellipsoid Q the control given by

u(x1, x2) =
2x1Θ(sin(2Θ)− 2Θ) + 2x2Θ(−2Θ2 − cos(2Θ) + 1)

2Θ4 − 2Θ2 + cos(2Θ) + 2Θ sin(2Θ)− 1
(4)

solves the local feedback synthesis for robust system (1). Moreover, the trajectory x(t) of the
closed-loop system, starting at an arbitrary initial point x(0) = x0 ∈ Q ends at the origin at

some finite time (settling-time function) T (x0, r) satisfying the estimate T (x0, r) ≤ Θ(x0)
γ
.

[1] Korobov V. I. The method of controllability function (Russian), R&C Dynamics, M.-Izhevsk, 2007:
1-576.
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The synthesis problem for LS to a non-equilibrium point
Valeriy Korobov, Kharkiv, Ukraine

Kateryna Stiepanova, Kharkiv, Ukraine

We are going to construct a control u(t) of the following type of system

ẋ = Ax+ bu, x ∈ Rn, u ∈ Ω ⊂ Rm, (1)

for which the trajectory starting at an arbitrary point x0 ∈ Rn transfers into a given non-
equilibrium point xT ∈ Rn in a finite time T = T (x0, xT ). Assume that the condition
(b, Ab, . . . , An−1b) = n holds. If this condition is not satisfied, then it is impossible to solve
problem of synthesis [1]. Since we are interested in the study of globally controlled systems,
‖u(t)‖ ≤ d for all t ∈ [0, T ] hold and eigenvalues of the matrix A have non-positive real parts.
Let u(t) be a control, which transfers x0 to xT in a finite time along the trajectory x(t) of

system (1) according to the Cauchy formula: x(t) = eAt
(
x0 +

t∫
0

e−Aτbu(τ)dτ
)
. Let us denote

x(T ) = xT , put t = T which is the time of getting to the xT :

x0 − e−ATxT = −
T∫

0

e−Aτbu(τ)dτ. (2)

If T were given, then the problem of getting to a stationary or even non-equilibrium point
would be reduced to the problem of getting from a fixed point (x0 − e−ATxT ) to zero. The
difficulty is that we do not know T , and the left side of equality (2) depends on T . By virtue
of identity (2), it is enough to find a trajectory that connects (x0 − e−ATxT ) and the origin
in a finite time T. Since we need to find this time T , it is also clear that

1) x0 − e−ATxT is not given;
2) xT is not equilibrium point of the initial system.
Construction of the control u(t), which transfers (x0 − e−ATxT ) to (0; 0) in time T and

satisfies the preassigned constraints, will be carried out in [2] by controllability function method
[3].

[1] Lee E. B., and Markus L. Foundations Of Optimal Control Theory, John Wiley and Sons, Inc., New
York, London, Sydney, 1967.

[2] Stiepanova K., Korobov V. The peculiarity of solving the synthesis problem for linear systems to a
non-equilibrium point.// Jour. Math. Phys. Anal. Geom. – 2021. – No. 4, pp.1-16

[3] Korobov V. I. The method of controllability function (Russian), R&C Dynamics, M.-Izhevsk, 2007:
1-576.
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Kumpera-Ruiz algebras and related issues
(21 years after a Trieste 2000 conference)

Piotr Mormul, Warsaw, Poland

In March 1998 H. Sussmann asked if all Goursat distributions were locally nilpotentizable
– whether they locally possessed a basis of sections generating a nilpotent Lie algebra over
the constants: D = span(X, Y ) locally, LieR(X, Y ) – nilpotent. (A synonyme for local
nilpotentizability is feedback nilpotentization.) Sussmann’s question fell into the framework
of his program formulated in the year 1993:

(. . . ) A third important issue is that of fully exploiting the possibilities of feedback nilpo-
tentization. This requires that one look for new classes of nilpotentizable systems, and also
that one improve the existing nilpotentization results by making them as explicit as possible.
(. . . )

During a conference in Trieste in June 2000 I answered Sussmann’s question by YES. The
emerging algebras were called Kumpera-Ruiz. Moreover, I gave effective recursive formulas
for the nilpotency orders of the Kumpera-Ruiz algebras.

In contemporary language the local nilpotentizability is called weak nilpotency, as con-
trasted to strong nilpotency – a relatively new notion sprung into the existence only in the
year 2000.

Relations between the weak and strong nilpotencies for Goursat distributions will be briefly
outlined during my presentation, along with the remaining open problems.
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Asymptotic analysis of classes of C0-groups with
generators having non-basis family of eigenvectors

Grigory Sklyar, Szczecin, Poland
Vitalii Marchenko, Kharkiv, Ukraine

Piotr Polak, Szczecin, Poland

The talk is devoted to asymptotic analysis of classes of C0-groups constructed in 2017 by
G. Sklyar and V. Marchenko in [1]. Unbounded generators of considered C0-groups of fixed
class k ∈ N have purely imaginary eigenvalues

λn = if(n), n ∈ N,

where

{f(n)}∞n=1 ∈ Sk=
{
{f(n)}∞n=1 ⊂ R : lim

n→∞
f(n) = +∞;

{
nj∆jf(n)

}∞
n=1
∈ `∞ for 1 ≤ j ≤ k

}
,

and corresponding complete minimal family of eigenvectors, which however does not form a
Schauder basis. Following ideas of [3] and developing them we proved that under only one
spectral condition, i.e. if ∃ a constant K > 0 such that ∀n ∈ N we have

n |∆f(n)| ≥ K, (1)

exact two-sided polynomial bounds for norms of corresponding C0-groups hold. This means
that C0-groups grow as |t|k, t → ±∞. However we showed that these C0-groups do not
have any maximal asymptotics. This means that the fastest growing orbits do not exist. Note
that the construction of these special classes of C0-groups from [1] allowed to prove in [2]
that the XYZ Theorem is sharp. The latter theorem (the XYZ Theorem) on the Riesz basis
property for invariant subspaces of the generator of the C0-group was obtained a decade ago
by G.Q. Xu, S.P. Yung and H. Zwart in [4], [5].

[1] Sklyar G. M., Marchenko V. Hardy inequality and the construction of infinitesimal operators with non-
basis family of eigenvectors// J. Funct. Anal. – 2017. – 272(3). – pp. 1017 - 1043.

[2] Sklyar G. M., Marchenko V. Resolvent of the generator of the C0-group with non-basis family of eigen-
vectors and sharpness of the XYZ theorem// J. Spectr. Theory, – 2021. – 11. – pp. 369 - 386.

[3] Sklyar G. M., Marchenko V., Polak P. Sharp polynomial bounds for certain C0-groups generated by
operators with non-basis family of eigenvectors// J. Funct. Anal. – 2021. – 280(7). – 108864.

[4] Xu G. Q., Yung S. P. The expansion of a semigroup and a Riesz basis criterion// J. Differ. Equ. – 2005.
– 210. – pp. 1 - 24.

[5] Zwart H. Riesz basis for strongly continuous groups// J. Differ. Equ. – 2010. – 249. – pp. 2397 - 2408.
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On the extension of Batty’s theorem on the semigroup
asymptotic stability

Grigory Sklyar, Szczecin, Poland
Piotr Polak, Szczecin, Poland

Bartosz Wasilewski, Szczecin, Poland

The well-known Batty’s theorem [1] states that if a C0-semigroup T (t) is bounded and the
spectrum of the generator A is contained in the open left-half plane of C, then ‖T (t)A−1‖
tends to 0. This can be thought of as a particular case of a more general property that, for
ω0 > −∞ and (ω0 + iR) ∩ σ(A) = ∅ it holds ‖T (t)(A − ω0I)−1‖/‖T (t)‖ tends to 0. We
show that it is true for ‖T (t)‖ regular enough, however we give examples [2] of unbounded
semigroups, with the spectrum of the generator not contained in the open left-half plane of
C, with the above property. Moreover we give a more general sufficient condition for this
property to hold, thus extending Batty’s theorem.

[1] C.J.K. Batty, Asymptotic behaviour of semigroups of operators, Banach Center Publ., 30, 35-52, (1994)

[2] G.M. Sklyar and V. Marchenko, Hardy inequality and the construction of infinitesimal operators with
non-basis family of eigenvectors. J. Func. Anal., 272, 1017-1043, (2017)
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Linearizability problem and invariants of linear control
systems with analytic matrices

Katerina Sklyar, Szczecin, Poland
Svetlana Ignatovich, Kharkiv, Ukraine

The problem of linearizability of control systems was a focus of attention of researches
during several decades. The paper of V. I. Korobov [1] was the first work in which a class of
systems was proposed that admit feedback linearization (triangular systems). Later, the idea
was developed for more general classes of systems. An alternative approach was proposed
by A. Krener, where the Lie bracket technique was applied, requiring C∞-smoothness. This
direction was intensively developed by many authors [2]-[4] under restrictive requirements for
the smoothness of the system. Fundamentally new results were obtained in [5], where the
linearizability problem for general affine systems of class C1 was solved.

However, the study of the linearizability problem was mainly concerned with autonomous
systems. The new step was taken in [6], namely, conditions of mappability of a nonlinear non-
autonomous systems to linear non-autonomous systems with analytic matrices were obtained.
An important role here is played by driftless systems of the form ẋ = b(t)u. It turns out that
the vector function γ(t) = K−1(t)b(n)(t), where K = (b(t), ḃ(t), . . . , b(n−1)(t)), is invariant
w.r.t. changes of variables. In the talk, we discuss the following “realizability problem”:
which functions γk(t) can be invariants of some linear driftless system. This problem is closely
connected with the classical study of homogeneous linear ODE with meromorphic coefficients.
We show how the answer helps in describing linearization conditions.

[1] V. I. Korobov, Controllability, stability of some nonlinear systems (Russian), Differ. Uravnenija 9 (1973)
614–619, translation: Differential Equations 9 (1975) 466–469.

[2] A. Krener, On the equivalence of control systems and the linearization of non-linear systems, SIAM J.
Control 11 (1973) 670–676.

[3] R. W. Brockett, Feedback invariance for nonlinear systems., in: Proceedings of the Seventh World
Congress IFAC, Helsinki, 1978, pp. 1115–1120.

[4] B. Jakubczyk, W. Respondek, On linearization of control systems, Bull. Acad. Sci. Polonaise Ser. Sci.
Math. 28 (1980) 517–522.

[5] G. M. Sklyar, K. V. Sklyar, S. Yu. Ignatovich, On the extension of the Korobov’s class of linearizable
triangular systems by nonlinear control systems of the class C1, Systems Control Lett. 54 (2005) 1097–
1108.

[6] K. Sklyar, On mappability of control systems to linear systems with analytic matrices, Systems Control
Lett. 134 (2019) 104572.

[7] K. Sklyar, S. Ignatovich, On linearizability conditions for non-autonomous control systems, in: A. Bar-
toszewicz, J. Kabziński, J. Kacprzyk (Eds.), Advanced, Contemporary Control. Advances in Intelligent
Systems and Computing, Vol. 1196, 2020, pp. 625-637.

[8] K. Sklyar, S. Ignatovich, Invariants of linear control systems with analytic matrices and the linearizability
problem, Journal of Dynamical and Control Systems, accepted.
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Uniqueness of large solutions of semilinear elliptic
equations with degenerate absorption

Yevgeniia Yevgenieva, Sloviansk, Ukraine

In bounded domain Ω ∈ RN with C2–smooth boundary ∂Ω we consider the semilinear
equation:

Lu+H(x)up := −
N∑

i,j=1

(aij(x)uxi)xj +H(x)up = 0 in Ω, p > 1, (1)

where C1,λ–smooth functions aij(·) satisfy the ellipticity condition

d1|ξ|2 >
N∑

i,j=1

aij(x)ξiξj > d0|ξ|2 ∀ ξ ∈ RN , ∀x ∈ Ω, d1 <∞, d0 > 0,

and absorption potential H(·) satisfies

H(x) > hω(d(x)) ∀x ∈ Ω, hω(s) =: exp

(
−ω(s)

s

)
∀ s ∈ (0, ρ0). (2)

Equation (1) with boundary condition

lim
d(x)→0

u(x) =∞, d(x) := dist(x, ∂Ω),

is called large solution [1].

Theorem [2] Let potential H satisfies estimate (2), where nondecreasing continuous function
ω(·) satisfies the technical condition:

sγ1 6 ω(s) < ω0 = const <∞ s ∈ (0, ρ0), 0 < γ1 < 1

and the Dini condition ∫ c

0

ω(s)

s
ds <∞; (3)

Then equation (1) admit only one large solution in mentioned domain Ω.

Remark We conjecture that Dini condition (3) is also a necessary condition for the unique-
ness of the large solution.

[1] J. Lopez-Gomez, L. Mair, L. Veron, General uniqueness results for large solutions, Z. Angew. Math.
Phys., 71:109 (2020).

[2] Shishkov A., Yevgenieva Ye. Very singular and large solutions of semilinear elliptic equations with de-
generate absorption, arXiv:2108.09089, 2021.
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