..

,

,
,
.. 



( )

(.. )


( )

:
5 1934

ֲ

:
" ", 1994 

(.. )


( )

  1. K. V. Nesvit, Yu. V. Gandel, Computational modeling of hypersingular integral equations for 2D pre-cantor scattering structure. International Journal of Advanced Mathematical Sciences, Vol. 3, No 2, 2015, pp. 161-171.
  2. Yu. V. Gandel, K. V. Nesvit, Boundary integral equations and its numerical analysis in diffraction of TE mode on slits in the impedance plane. Belgorod State University Scientific Bulletin, series Mathematics and Physics, No. 19 (162), Issue 32, 2013, pp.163-175.
  3. Yu. V. Gandel. Boundary-value problems for the Helmholtz equation and their discrete mathematical models, Journal of Mathematical Sciences, 2010, Vol. 171, 1, pp 74-88.
  4. V. S. Bulygin and Yu. V. Gandel. Boundary-value problems for 3D Helmholtz equations, boundary pseudodifferential equations, and numerical experiment, Boundary-Value Problems for Differential Equations, 2008, No. 17, pp 210234.
  5. A. S. Kononenko and Yu.V. Gandel. Singular and hypersingular integral equation techniques for gyrotron coaxial resonators with a corrugated inser, Int. J. Infared Millimeter Waves, 2007, 28, No. 4, 267274.
  6. Yu.V. Gandel and A. S. Kononenko. Hypersingular integral equations of the gyrotron mathematical model for the case of TM waves, Vestnik Kharkiv Nats. Univ. Ser. Mat. Model., Inform. Tech., Aut. Contr. Sys., 2007, 4, No. 661, 8388.
  7. Yu.V. Gandel, A. S. Kononenko, and T. S. Polyanskaya. Justification of the discrete mathematical model for hypersingular integral equations on systems of segments, Vestnik Kharkiv Nats. Univ. Ser. Mat. Model., Inform. Tech., Aut. Contr. Sys., 2007, 8, No. 780, P. 7178.
  8. Yu.V. Gandel and V.O. Mishcnenko. Pseudodifferential equations of the electromagnetic diffraction by plane-parallel structures and their discrete model, Vestnik Kharkiv Nats. Univ. Ser. Mat. Model., Inform. Tech., Aut. Contr. Sys., 2006, 6, No. 733, P. 5875.
  9. Yu.V. Gandel and A. S. Kononenko. Justification of the numerical solution of a hypersingular integral equation, Differ. Equ., 2006, 42, No. 9, P. 13261333.
  10. Yu.V. Gandel and A. S. Kononenko. A mathematical model of a gyrotron with different permittivities of media in the working zone and in resonator gophers, Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky, 2005, No. 10, 7074 .
  11. O. Dumbrajs, Yu. V. Gandel, K. Schuenemann, G. I. Zaginaylov, and A. S. Kononenko. Full wave analysis of coaxial cavity gyrotrons, Proc. Tenth Triennial ITG-Conf. on Displays and Vacuum Electronics, Garmisch-Partenkirchen, 2004, pp 7580.
  12. A. V. Antonets and Yu. V. Gandel. Numerical analysis of hypersingular integral equations of diffraction problems over plane screens, Vestnik Kharkiv Nats. Univ. Ser. Mat. Model., Inform. Tech., Aut. Contr. Sys., 2003, 1, No. 590, pp 914.
  13. Yu.V. Gandel. The method of paired and singular integral equations for diffraction problems by bounded lattices, Electromagnetic Phenomena, 1998, 1, No. 2, P. 220232.
  14. Yu.V. Gandel The method of discrete singularities in problems of electrodynamics, Vopr. Kibern., Mosk., 1986, No. 124, pp 166183.
  15. Yu.V. Gandel. Paired integral equations that reduce to a singular integral equation on a system of segments, Teor. Funktsii, Funktsional. Anal. i Pilozhen., 1983, No. 40, pp 3336.
  16. Yu. V. Gandel. Double Fourier series of some mixed boundary value problems of mathematical physics, Teor. Funktsii, Funktsional. Anal. i Pilozhen., 1982, No. 38, pp 1518.

(.. )


( )

  1. Yu. V. Gandel, K. V. Nesvit, Mathematical model of the monochromatic wave di?raction on the slits in impedance plane, lying on the boundary between two media (in Russian). Proceedings Russian Scientific- Technical Society of Radio Engineering, Electronics and Communication named after A.S. Popov, Moscow, No LXVII, 2012, pp.114-117.
  2. Yu. V. Gandel, K. V. Nesvit, Singular and hypersingular integral equations of the diffraction problem on gratings and its discrete mathematical models (in Russian). Proceedings of the XIV International Conference on the Academician M. Kravchuk, National Technical University of Ukraine Kyiv Polytechnic Institute, 2012, p. 122.
  3. Yu.V. Gandel. Boundary-value problems for the Helmholtz equation and their discrete models, Abstr. Fifth Int. Conf. Differential and Functional Differential Equations, Moscow, 92-93 (2008).
  4. Yu.V. Gandel. Boundary hypersingular integral equations for boundary-value problems for Helmholtz equations and their discrete mathematical models, Materials Int. SchoolConference Tarapov Readings, Kharkiv Nats. Univ., Kharkiv, 2325 (2008).
  5. Yu.V. Gandel. Parametric representations of pseudodifferential operators and boundary equations of mixed boundary-value problems of the mathematical diffraction theory, Abstr. Int. Conf. Function Spaces. Differential Operators. General Topology. Problems of Mathematical Education devoted to the 85th Birthday of L. D. Kudryavtsev, MFTI, Moscow, 244246 (2008).
  6. Yu.V. Gandel and A. S. Kononenko. First-kind hypersingular integral equations in the general form and its discrete mathematical model, Proc. Thirteenth Int. Symp. Discrete Singularities Methods in Problems of Mathematical Physics, Kharkiv, 9194 (2007).
  7. A. S. Kononenko and Yu.V. Gandel. Mathematical model of ohmic losses in a coaxial cavity gyrotron with a corrugated inser, Proc. Sixth Int. Symp. on Physics and Engineering of Microwaves, Millimeter, and Submillimeter Waves, Kharkiv, 292294 (2007).
  8. A. S. Kononenko and Yu.V. Gandel. Rigorous mathematical model and simulation for TM waves in coaxial cavity gyrotrons, Proc. Eleventh Int. Conf. Math. Methods in Electromagnetic Theory, Kharkiv, 535537 (2006).
  9. A. S. Kononenko and Yu.V. Gandel. Standing waves in a coaxial cavity gyrotron with a corrugated insert, Proc. Asia Pacific Microwave Conf., Yokohama, 13001303 (2006).
  10. A. S. Kononenko and Yu.V. Gandel. Theoretical and numerical investigations of TE and TM modes in coaxial cavity gyrotrons, Proc. Thirty-Sixth European Microwave Conf., Manchester, 11151118 (2006).
  11. Yu.V. Gandel and A. S. Kononenko. A mathematical model for the full wave analysis of a coaxial gyrotron, based on boundary integral equations, Abstr. Conf. Dynamical System Modelling and Stability Investigation, Kiev (2005).
  12. Yu.V. Gandel and A. S. Kononenko. Mathematical model of a cavity gyrotron on the basis of hypersingular integral equations, Proc. Tenth Int. Conf. Math. Methods in Electromagnetic Theory, Dnipropetrovsk, 559561 (2004).

(.. )


E-mail ( )

(.. )


22.05.2016.